首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential clinical use of stem cells for cell transplantation therapies to replace defective genes in myopathies is an area of intense investigation. Precursor cells derived from non-muscle tissue with myogenic potential have been identified in many tissues, including bone marrow and dermis, although the status of these putative stem cells requires clarification. The incorporation of circulating bone-marrow derived stem cells into regenerating adult skeletal muscle has been demonstrated in mice but the contribution of donor cells is so minimal that it would appear clinically irrelevant at this stage. The possibility of a true stem cell subpopulation within skeletal muscle that replenishes the satellite cells (conventional muscle precursors on the surface of myofibres) is also very attractive as a superior source of myoblasts for muscle construction. A full understanding of the intrinsic factors (i.e. gene expression within the stem cell) and extrinsic factors (i.e. signals from the external environment) which control the commitment of stem cells to the myogenic lineage, and the conditions which favour stem cell expansion in vivo is required before stem cells can be seriously considered for clinical cell therapy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Pax7 is required for the specification of myogenic satellite cells   总被引:55,自引:0,他引:55  
  相似文献   

3.
Myogenic satellite cells were isolated from control and dystrophic hamster diaphragms to examine cellular mechanisms involved in the physiology of muscular dystrophy. The Bio 14.6 dystrophic hamster, which possesses a defect in the delta-sarcoglycan gene, develops biochemical and physical symptoms of Duchenne-like and limb girdle muscular dystrophies. Because primary cultures of the control and dystrophic satellite cells became extensively contaminated with non-myogenic cells during proliferation, cell clones were developed to provide pure cultures for study. Cell culture conditions were optimized with the use of Ham's F-12K medium containing 10% fetal bovine serum +5% horse serum + 10 ng/mL basic fibroblast growth factor + 50 microg/mL porcine gelatin. Proliferation rates of the two clonal cultures were similar between the two lines. Satellite cell-derived myotubes from both primary cultures and clones differed between control and dystrophic animals. Dystrophic myotubes tended to be long and narrow, while the control-derived myotubes were broader. Measurement of muscle-specific creatine kinase during differentiation revealed that the dystrophic myotubes possessed higher creatine kinase levels than control myotubes (up to 146-fold at 168 h). The results demonstrate that satellite cells can be isolated from the hamster and may provide a useful tool to study muscular dystrophies associated with defects in the sarcoglycan complex and the involvement of sarcoglycans in normal skeletal muscle growth and development.  相似文献   

4.
Myostatin (GDF-8) inhibits the activation, proliferation, and differentiation of myogenic satellite cells. The relative importance of this growth factor is demonstrated in myostatin-null mice and cattle possessing defective myostatin genes. These defects result in greatly enhanced musculature. In the present study, we examined the effect of myostatin on turkey myogenic satellite cells and embryonic myoblasts. Compared with controls (P<0.05), proliferation of both turkey embryonic myoblasts and satellite cells was inhibited between 26 and 45% in serum-free medium containing 20 ng/mL myostatin. While individual turkey satellite cell clones differed in their responsiveness to myostatin, there were no significant differences in the responsiveness of fast and slow growing cells as groups (P>0.05). A slow growing clone that exhibited the greatest response to myostatin also exhibited the greatest depression of differentiation with this growth factor (P<0.05). All other turkey satellite cell clones exhibited similar responses to the differentiation depressing effects of myostatin (P>0.05). However, myostatin had no effect on differentiation of turkey embryonic myoblasts (P>0.05). When exposed to myostatin, 4 of 6 proliferating clones and all differentiating clones increased their expression of decorin, a growth inhibitor (P<0.05). The present study demonstrates that myostatin inhibits the proliferation and differentiation of satellite cells and suggests a role for decorin in myostatin action in muscle development.  相似文献   

5.
Conditions for isolation and culture of porcine myogenic satellite cells.   总被引:5,自引:0,他引:5  
Myogenic satellite cells were isolated from semimembranosus muscles of 4-8 week-old pigs. Muscles were ground and incubated in 0.8 mg/ml Pronase solution for 40 min at 37 degrees C. Following enzymatic digestion, cells were separated from muscle debris by differential centrifugation and sequential filtering through 500 and 53 microns nylon mesh. Primary cultures grown in 16 mm diameter cell culture wells were used to evaluate five sera, media, and substrata for their ability to promote satellite cell proliferation and differentiation. Porcine satellite cell proliferation and myotube formation were optimized in cultures grown on gelatin-coated substratum in the presence of Minimum Essential Medium-alpha supplemented with 10% fetal bovine serum (FBS) (P less than 0.01). Maximum fusion was induced by 48 hr exposure to 2% FBS, horse serum, or lamb serum. These data 1) document the first evidence that myogenic satellite cells can be isolated from porcine skeletal muscle, and 2) identify culture conditions which optimize proliferation and myotube formation of porcine satellite cells.  相似文献   

6.
7.
Angiosperm nucellar cells can either use or avoid meiosis in vivo, depending on the developmental context. This unique ability contrasts with the conditions required in vitro, either for a reconstituted oocyte to avoid meiosis and produce clones by somatic cell nuclear transfer (SCNT), or for mammalian stem cells to undergo meiosis and produce synthetic sex cells (gametes). Current biotechnological initiatives to harness the potential of nucellar cells are based on the transfer of apomixis genes to sexual crop plants with the aim of producing clones through seeds. The elusive genetic basis of apomixis compels us to examine whether this process involves epigenetic factors. The elegant and versatile developmental platform available in nucellar cells should be explored as a genome-scale science and compared with mammalian stem cell biology for a holistic understanding of developmental programming and reprogramming in eukaryotes.  相似文献   

8.
Cells derived from blood vessels of human skeletal muscle can regenerate skeletal muscle, similarly to embryonic mesoangioblasts. However, adult cells do not express endothelial markers, but instead express markers of pericytes, such as NG2 proteoglycan and alkaline phosphatase (ALP), and can be prospectively isolated from freshly dissociated ALP(+) cells. Unlike canonical myogenic precursors (satellite cells), pericyte-derived cells express myogenic markers only in differentiated myotubes, which they form spontaneously with high efficiency. When transplanted into severe combined immune deficient-X-linked, mouse muscular dystrophy (scid-mdx) mice, pericyte-derived cells colonize host muscle and generate numerous fibres expressing human dystrophin. Similar cells isolated from Duchenne patients, and engineered to express human mini-dystrophin, also give rise to many dystrophin-positive fibres in vivo. These data show that myogenic precursors, distinct from satellite cells, are associated with microvascular walls in the human skeletal muscle, may represent a correlate of embryonic 'mesoangioblasts' present after birth and may be a promising candidate for future cell-therapy protocols in patients.  相似文献   

9.
The molecular mechanisms underlying myogenic satellite cells (MSCs) differentiation into myotube-formed cells (MFCs) and transdifferentiation into adipocyte-like cells (ALCs) are unclear. As a step towards understanding the molecular mechanisms underlying MSC differentiation and transdifferentiation, we attempted to identify the genes differentially expressed during differentiation and transdifferentiation using gene microarray analysis (GMA). Thirty oligonucleotide arrays were used with two technical replicates and nine and six biological replicates for MFCs vs. MSCs and ALCs vs. MSCs, respectively, to contrast expression profile differences. GMA identified 1,224 differentially expressed genes by at least 2-fold during differentiation and transdifferentiation of MSCs. To select the highly expressed genes for future functional study, genes with a 4-fold expression difference were selected for validation by real time RT-PCR and approximately 96.9% of the genes were validated. The up-regulation of marker genes for myogenesis (MYL2, MYH3) and adipogenesis (PPAR??, and FABP4) was observed during the differentiation and transdifferentiation of MSCs into MFCs and ALCs, respectively. KOG analysis revealed that the most of the genes up-regulated during differentiation and transdifferentiation of MSCs were related to signal transduction. Again the exact location of 109 differentially expressed genes by 4-fold were analyzed by chromosome mapping. Among those, co-localization of 29 genes up-regulated during transdifferentiation with QTL for marbling score and intramuscular fat percentage supports the involvement of these genes in cellular transdifferentiation. Interestingly, some genes with unknown function were also identified during the process. Functional studies on these genes may unfold the molecular mechanisms controlling MSC differentiation and transdifferentiation.  相似文献   

10.
11.
A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.  相似文献   

12.
We identify here the multiple epidermal growth factor repeat transmembrane protein Megf10 as a quiescent satellite cell marker that is also expressed in skeletal myoblasts but not in differentiated myofibers. Retroviral expression of Megf10 in myoblasts results in enhanced proliferation and inhibited differentiation. Infected myoblasts that fail to differentiate undergo cell cycle arrest and can reenter the cell cycle upon serum restimulation. Moreover, experimental modulations of Megf10 alter the expression levels of Pax7 and the myogenic regulatory factors. In contrast, Megf10 silencing in activated satellite cells on individual fibers or in cultured myoblasts results in a dramatic reduction in the cell number, caused by myogenin activation and precocious differentiation as well as a depletion of the self-renewing Pax7+/MyoD population. Additionally, Megf10 silencing in MyoD/ myoblasts results in down-regulation of Notch signaling components. We conclude that Megf10 represents a novel transmembrane protein that impinges on Notch signaling to regulate the satellite cell population balance between proliferation and differentiation.  相似文献   

13.
Muscle-derived stem cells (MDSCs) can differentiate into multiple lineages, including haematopoietic lineages. However, it is unknown whether MDSCs preserve their myogenic potential after differentiation into other lineages. To address this issue, we isolated from dystrophic muscle a population of MDSCs that express stem-cell markers and can differentiate into various lineages. After systemic delivery of three MDSC clones into lethally irradiated mice, we found that differentiation of the donor cells into various lineages of the haematopoietic system resulted in repopulation of the recipients' bone marrow. Donor-derived bone-marrow cells, isolated from these recipients by fluorescence-activated cell sorting (FACS), also repopulated the bone marrow of secondary, lethally irradiated, recipients and differentiated into myogenic cells both in vitro and in vivo in normal mdx mice. These findings demonstrate that MDSC clones retain their myogenic potential after haematopoietic differentiation.  相似文献   

14.
Adult myogenesis responsible for the maintenance and repair of muscle tissue is mainly under the control of myogenic regulatory factors (MRFs) and a few other genes. Transthyretin gene (TTR), codes for a carrier protein for thyroxin (T4) and retinol binding protein bound with retinol in blood plasma, plays a critical role during the early stages of myogenesis. Herein, we investigated the relationship of TTR with other muscle-specific genes and report their expression in muscle satellite cells (MSCs), and increased messenger RNA (mRNA) and protein expression of TTR during MSCs differentiation. Silencing of TTR resulted in decreased myotube formation and decreased expression of myosin light chain (MYL2), myosin heavy chain 3 (MYH3), matrix gla protein (MGP), and voltage-dependent L type calcium channel (Cav1.1) genes. Increased mRNA expression observed in TTR and other myogenic genes with the addition of T4 decreased significantly following TTR knockdown, indicating the critical role of TTR in T4 transportation. Similarly, decreased expression of MGP and Cav1.1 following TTR knockdown signifies the dual role of TTR in controlling muscle myogenesis via regulation of T4 and calcium channel. Our computational and experimental evidences indicate that TTR has a relationship with MRFs and may act on calcium channel and related genes.  相似文献   

15.
Genetic studies show that TGFbeta signaling is essential for vascular development, although the mechanism through which this pathway operates is incompletely understood. Here we demonstrate that the TGFbeta auxiliary coreceptor endoglin (eng, CD105) is expressed in a subset of neural crest stem cells (NCSCs) in vivo and is required for their myogenic differentiation. Overexpression of endoglin in the neural crest caused pericardial hemorrhaging, correlating with altered vascular smooth muscle cell investment in the walls of major vessels and upregulation of smooth muscle alpha-actin protein levels. Clonogenic differentiation assay of NCSCs derived from neural tube explants demonstrated that only NCSC expressing high levels of endoglin (NCSC(CD105+)) had myogenic differentiation potential. Furthermore, myogenic potential was deficient in NCSCs obtained from endoglin null embryos. Expression of endoglin in NCSCs declined with age, coinciding with a reduction in both smooth muscle differentiation potential and TGFbeta1 responsiveness. These findings demonstrate a cell autonomous role for endoglin in smooth muscle cell specification contributing to vascular integrity.  相似文献   

16.
Major aspects of the biology of muscle satellite cells are reviewed: the identification, origin in early development, mechanisms of self-renewal mediated by asymmetric divisions, content in different muscle types and in different ontogenetic stages, role of control genes of the Pax family (in particular, Pax7) and their products in proliferation control, and involvement of growth factors (HGF, FGF, IDF, and TGF-β) in the activation of these cells after muscle damage. The characteristics of the early stages of myogenic differentiation of activated satellite cells along the pathway similar to muscle formation in embryonic development are discussed.  相似文献   

17.
Adult skeletal muscle contains an abundant and highly accessible population of muscle stem and progenitor cells called satellite cells. The primary function of satellite cells is to mediate postnatal muscle growth and repair. Owing to their availability and remarkable capacity to regenerate damaged muscle, satellite cells and their descendent myoblasts have been considered as powerful candidates for cell-based therapies to treat muscular dystrophies and other neuromuscular diseases. However, regenerative medicine in muscle repair requires a thorough understanding of, and the ability to manipulate, the molecular mechanisms that control the proliferation, self-renewal and myogenic differentiation of satellite cells. Here, we review the latest advances in our current understanding of the quiescence, activation, proliferation and self-renewal of satellite cells and the challenges in the development of satellite cell-based regenerative medicine.  相似文献   

18.
We investigated whether the vessel-associated or endothelial cells within mouse embryo muscles can be a source of myogenic progenitors. Immunodetection of the stem cell surface markers, CD34 and Flk1, which are known to characterize the endothelial lineage, was done throughout the course of embryo muscle development. Both markers appeared to be restricted to the vessel-associated cells. On the basis of CD34 labeling, the reactive cells were purified by magnetic-bead selection from the limb muscles of 17-dpc desmin+/-LacZ mouse embryos and characterized by fluorescence-activated cell sorting. The cells in the selected CD34(+) population appeared to be approximately 95% positive for Flk1, but usually negative for CD45. We demonstrated that in vitro the CD34(+)/Flk1(+) population differentiated into endothelial cells and skeletal myofibers. When transplanted into mdx mouse muscle, this population displayed a high propensity to disperse within the recipient muscle, fuse with the host myofibers, and restore dystrophin expression. The marked ability of the embryonic muscle endothelial cells to activate myogenic program could be related to their somitic origin.  相似文献   

19.
The vestibular evoked myogenic potential (VEMP) can be modeled (scaling factors aside) as a convolution of the motor unit action potential (MUAP) of a representative motor unit, h(t), with the temporal modulation of the MUAP rate of all contributing motor units, r(t). Accordingly, the variance modulation associated with the VEMP can be modeled as a convolution of r(t) with the square of h(t). To get a deeper theoretical understanding of the VEMP phenomenon, a specific realization of this general model is investigated here. Both r(t) and h(t) were derived from a Gaussian probability density function (in the latter case taking the first derivative). The resulting model turned out to be simple enough to be evaluated analytically in the time and in the frequency domain, while still being realistic enough to account for the basic aspects of the VEMP generation. Perhaps the most significant conclusion of this study is that, in the case of noisy data, it may be difficult to falsify the hypothesis of a rate modulation of infinitesimal duration. Thus, certain aspects of the data (particularly the peak amplitudes) can be interpreted using a short-modulation approximation rather than the general model. The importance of this realization arises from the fact that the approximation offers an exceptionally simple and convenient way for a model-based interpretation of experimental data, whereas any attempt to use the general model for that purpose would result in an ill-posed inverse problem that is far from easy to solve.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号