首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cilostazol is a drug licensed for the treatment of intermittent claudication. Its main action is to elevate intracellular levels of cyclic monophosphate (cAMP) by inhibiting the activity of type III phosphodiesterase, a cAMP-degrading enzyme. The effects of cilostazol on fatty acid oxidation (FAO) are as yet unknown. In this study, we report that cilostazol can elevate complete FAO and decrease both triacylglycerol (TAG) accumulation and TAG secretion. This use of cilostazol treatment increases expression of PGC-1α and, subsequently, its target genes, such as ERRα, NOR1, CD36, CPT1, MCAD, and ACO. Expression of these factors is linked to fatty acid β-oxidation but this effect is inhibited by H-89, a specific inhibitor of the PKA/CREB pathway. Importantly, knockdown of PGC-1α using siRNA abolished the effects of cilostazol in fatty acid oxidation (FAO) and TAG metabolism. These findings suggested that the PKA/CREB/PGC-1α pathway plays a critical role in cilostazol-induced fatty acid oxidation and TAG metabolism.  相似文献   

3.
4.
Yang W  Zhang J  Wang H  Shen W  Gao P  Singh M  Fang N 《FEBS letters》2011,585(5):761-766
Peroxisome proliferator-activated receptor (PPAR) γ ligands oppose the effect induced by angiotensin II (Ang II) to reduce oxidative stress and improve antioxidant status. In this study, Ang II inhibited catalase (CAT) and peroxisome proliferator-activated receptor γ (PPAR γ) protein and mRNA expressions. Transfection with PPAR γ small-interfering RNA (siRNA) led to a reduction in CAT expression. PPAR γ ligands enhanced CAT expression and inhibited extracellular signal-regulated kinase 1/2 activation. We further reveal that Ang II type 1 receptor is not involved in the inhibitory effects of PPAR γ ligands on Ang II stimulatory events.  相似文献   

5.
6.
7.
8.
Muscle mass is determined between protein synthesis and protein degradation. Reduction of muscle mass leads to bedridden condition and attenuation of resistance to diseases. Moreover, bedridden condition leads to additional muscle loss due to disuse muscle atrophy. In our previous study (Sato et al. 2013), we showed that administered lysine (Lys), one of essential amino acid, suppressed protein degradation in skeletal muscle. In this study, we investigated that the mechanism of the suppressive effects of Lys on skeletal muscle proteolysis in C2C12 cell line. C2C12 myotubes were incubated in the serum-free medium containing 10 mM Lys or 20 mM Lys, and myofibrillar protein degradation was determined by the rates of 3-methylhistidine (MeHis) release from the cells. The mammalian target of rapamycin (mTOR) activity from the phosphorylation levels of p70-ribosormal protein S6 kinase 1 and eIF4E-binding protein 1 and the autophagic–lysosomal system activity from the ratio of LC3-II/I in C2C12 myotubes stimulated by 10 mM Lys for 0–3 h were measured. The rates of MeHis release were markedly reduced by addition of Lys. The autophagic–lysosomal system activity was inhibited upon 30 min of Lys supplementation. The activity of mTOR was significantly increased upon 30 min of Lys supplementation. The suppressive effect of Lys on the proteolysis by the autophagic–lysosomal system was maintained partially when mTOR activity was inhibited by 100 nM rapamycin, suggesting that some regulator other than mTOR signaling, for example, Akt, might also suppress the autophagic–lysosomal system. From these results, we suggested that Lys suppressed the activity of the autophagic–lysosomal system in part through activation of mTOR and reduced myofibrillar protein degradation in C2C12 myotubes.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
O-GlcNAc glycosylations on serines or threonines are reversible post-translational modifications that control the localisation, the activity or the stability of cytosolic and nuclear proteins. These dynamic modifications are tightly dependent on the availability of glucose and on its flux through the hexosamine biosynthetic pathway. We recently showed that treatments that increase protein O-GlcNAc glycosylation (high-glucose concentrations, glucosamine) or inhibit their deglycosylation (PUGNAc), induced O-GlcNAc modification of FoxO1 in HEK293 cells. O-GlcNAc glycosylation of FoxO1 resulted in an increased of its activity towards a glucose 6-phosphatase promoter-luciferase reporter gene (G6Pase-luc). This effect appeared to be independent of FoxO1 sub-cellular re-localisation, since it was also observed with the constitutively nuclear FoxO1-AAA mutant. In liver-derived HepG2 cells, glucosamine and PUGNAc increased the expression of G6Pase mRNA, and synergistic effects were observed when both agents were present together. In addition, the expression of PGC1 alpha gene, which is known to be under the control of FoxO1, was also increased by glucosamine and PUGNAc. In HepG2 cells stably expressing the G6Pase-luc reporter gene, glucosamine and PUGNAc also increased the activity of the G6Pase promoter. The stimulation of the G6Pase reporter gene by these agents was abolished by two different FoxO1 siRNAs, thereby demonstrating the involvement of endogenous FoxO1 in the observed effects. Since G6Pase plays a key role in glucose production by the liver, increased in its expression through FoxO1 O-GlcNAc modification may be of considerable importance in the context of glucotoxicity associated with chronic hyperglycaemia. Moreover, since FoxO1 also plays important roles in several aspects of cell biology, including cell proliferation, survival and apoptosis, the regulation of FoxO1 activity by O-GlcNAc modification may have implications for other crucial biological processes.  相似文献   

18.
19.
Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号