首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent intervention studies revealed that beta-carotene supplement to smokers resulted in a higher incidence of lung cancer. However, the causal mechanisms remain to be clarified. We reported here that vitamin A (retinol) and its derivative (retinal) caused cellular DNA cleavage detected by pulsed field gel electrophoresis. Retinol and retinal significantly induced 8-oxo-7,8-dihydro-2'-deoxyguanosine formation in HL-60 cells but not in H(2)O(2)-resistant HP100 cells, suggesting the involvement of H(2)O(2) in cellular DNA damage. Experiments using (32)P-labeled isolated DNA demonstrated that retinol and retinal caused Cu(II)-mediated DNA damage, which was inhibited by catalase. UV-visible spectroscopic and electron spin resonance-trapping studies revealed the generation of superoxide and carbon-centered radicals, respectively. The superoxide generation during autoxidation of retinoids was significantly correlated with the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, although the yield of carbon-centered radicals was not necessarily related to the intensity of DNA damage. These findings suggest that superoxide generated by autoxidation of retinoids was dismutated to H(2)O(2), which was responsible for DNA damage in the presence of endogenous metals. Retinol and retinal have prooxidant abilities, which might lead to carcinogenesis of the supplements of beta-carotene.  相似文献   

2.
Myohemerythrin (Mhr) is a non-heme iron O2 carrier (with two irons in the active site) that is typically found in the retractor muscle of marine 'peanut' worms. OxyMhr may either release O2, or undergo an autoxidation reaction in which hydrogen peroxide is released and diferric metMhr is produced. The autoxidation reaction can also be promoted by the addition of certain anions to Mhr solutions. This work, using recombinant Themiste zostericola Mhrs, contrasts the results of environmental effects on these reactions. For the O2 release reaction, deltaVdouble dagger(21.5 degrees C) = +28+/-3 cm3 mol(-1), deltaHdouble dagger(1 atm) = +22+/-1 kcal mol(-1), and deltaSdouble dagger(1 atm) = +28+/-4 eu. The autoxidation reaction (pH 8.0, 21.5 degrees C, 1 atm) displays different kinetic parameters: deltaVdouble dagger = -8+/-2 cm3 mol(-1), deltaHdouble dagger = +24.1+/-0.7 kcal mol(-1), and deltaSdouble dagger = +1+/-1 eu. Autoxidation in the presence of sodium azide is orders of magnitude faster than solvolytic autoxidation. The deltaVdouble dagger parameters for azide anation and azide-assisted autoxidation reaction are +15+/-2 and +59+/-2 cm3 mol(-1), respectively, indicating that the rate-limiting steps for the Mhr autoxidation and anation reactions (including O2 uptake) are not associated with ligand binding to the Fe2 center. The L103V and L103N oxyMhr mutants autoxidize approximately 10(3)-10(5) times faster than the wild-type protein, emphasizing the importance of leucine-103, which may function as a protein 'gate' in stabilizing bound dioxygen.  相似文献   

3.
1. The interactions of retinol and retinoic acid with two electron acceptors, 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetrachloro-1,4-benzoquinone (chloranil), were studied in an investigation on the ability of vitamin A to behave as a donor of electrons. 2. Retinol reacts with TCNQ in polar organic solvents with the formation, as judged by spectral studies, of the radical anion of TCNQ. 3. Addition of the products of this reaction to water is accompanied by a rapid consumption of OH(-) ions. 4. Consumption of OH(-) ions is also a feature of the reactions between retinol and chloranil, but the spectrum of the radical anion of chloranil is observed only when retinol and chloranil are suspended in aqueous salt solutions. 5. Retinoic acid behaves similarly to retinol in its reactions with TCNQ and chloranil, but it appears to be a weaker electron donor than retinol. 6. The reaction products that may be formed from retinol in its reactions with TCNQ and chloranil are discussed. 7. It is suggested that the ability of vitamin A to behave as a donor of electrons may be an important aspect of its biochemical mode of action.  相似文献   

4.
Both metmyoglobin (MbIII) and ferrylmyoglobin (MbIV) are reduced by the menadiol-glutathione conjugate (GS-Q2-) to oxymyoglobin (MbIIO2) or deoxymyoglobin (MbII), depending whether the assay is carried out under aerobic or anaerobic conditions, respectively. Under aerobic conditions, the reduction of MbIII to MbIIO2 by GS-Q2- is associated with O2 consumption. The latter process is accounted for by (a) the autoxidation of the conjugate yielding H2O2 and (b) the rapid binding of O2 to MbII to yield MbIIO2. The ratio [O2]consumed/[MbIIO2]formed is approximately 1.5 at the time when MbIIO2 formation is maximal (at about 0.8 min). This ratio, higher than the unit, indicates that there is more than one O2-consuming reaction in this experimental model. The ratio of initial rates of O2 consumption and MbIIO2 formation is close to the unit [(-dO2/dt)/(+ dMbIIO2/dt) = 1.1]. The formation of H2O2 originating during the autoxidation of the GS-Q2- is substantially lower in the presence of MbIII, probably due to the heterolytic cleavage of the O--O bond of the peroxide by the hemoprotein. Although the latter reaction should yield MbIV, this species is not observed in the absorption spectrum, probably due to its rapid reduction by GS-Q2-. MbIV is reduced to MbIIO2 by the GS-Q2-. Whether this reaction takes place in one-electron transfer steps, that is, the sequence: MbIV----MbIII----MbIIO2 is difficult to evaluate by absorption spectral analysis, due to the rapid rate of the [MbIV----MbIIO2] transition. Under anaerobic conditions, the reduction of either MbIII or MbIV by GS-Q2- yields MbII as a stable molecular product. Anaerobic conditions prevent any further interaction of MbII with intermediates of O2 reduction derived from GS-Q2- autoxidation.  相似文献   

5.
The rate and mechanism of autoxidation of soluble ferrocytochrome b5, prepared from liver microsomal suspensions, appear to reflect an intrinsic property of membrane-bound cytochrome b5. The first-order rate constant for autoxidation of trypsin-cleaved ferrocytochrome b5, prepared by reduction with dithionite, was 2.00 X 10(-3) +/- 0.19 X 10(-3) S-1 (mean +/- S.E.M., n =8) when measured at 30 degrees C in 10 mM-phosphate buffer, pH 7.4. At 37 degrees C in aerated 10 mM-phosphate buffer (pH 7.4)/0.15 M-KCl, the rate constant was 5.6 X 10(-3) S-1. The autoxidation reaction was faster at lower pH values and at high ionic strengths. Unlike ferromyoglobin, the autoxidation reaction of which is maximal at low O2 concentrations, autoxidation of ferrocytochrome b5 showed a simple O2-dependence with an apparent Km for O2 of 2.28 X 10(-4) M (approx. 20kPa or 150mmHg)9 During autoxidation, 0.25 mol of O2 was consumed per mol of cytochrome oxidized. Cyanide, nucleophilic anions, EDTA and catalase each had little or no effect on autoxidation rates. Adrenaline significantly enhanced autoxidation rates, causing a tenfold increase at 0.6 mM. Ferrocytochrome b5 reduced an excess of cytochrome c in a biphasic manner. An initial rapid phase, independent of O2 concentration, was unaffected by superoxide dismutase. A subsequent slower phase, which continued for up to 60 min, was retarded at low O2 concentrations and inhibited by 65% by superoxide dismutase at a concentration of 3 mug/ml. It is concluded that autoxidation is responsible for a significant proportion of electron flow between cytochrome b5 and O2 in liver endoplasmic membranes, this reaction being capable of generating superoxide anions. A biological role for the reaction is discussed.  相似文献   

6.
We have investigated the steps by which retinol, released from plasma retinol-binding protein (RBP), enters the cells and is accumulated for the most part as a retinyl-ester, only a small fraction of it being present as a complex with cytoplasmic retinol-binding protein (CRBP). For this purpose, we have developed a cell-free system composed of plasma membrane-enriched fractions from bovine retinal pigment epithelium which selectively incorporates exogenous vitamin A when presented as a retinol-RBP complex. Upon incubation in the presence of [3H]retinol-RBP, isolated plasma membrane fractions take up and esterify retinol. A 4-fold reduction of total vitamin A incorporation is observed in conditions which specifically inhibit retinyl-ester formation, thus indicating that the two processes of retinol uptake and esterification are functionally coupled. Evidence is presented that retinol bound to a plasma membrane receptor sharing functional and structural similarities with CRBP is the actual substrate for esterification. Vitamin A accumulation seems to require retinol esterification to allow the recycling of a limited number of free, plasma membrane-associated, retinol receptors. Mobilization of retinol stored as a membrane-bound retinyl-ester is mediated by a membrane-associated hydrolase activity selectively controlled by the level of apo-CRBP which acts as a carrier for the released retinol. Up to 90% of membrane-bound vitamin A is released upon incubation in the presence of apo-CRBP (11 microM) with concomitant formation of retinol-CRBP. The overall process, in which retinol never needs to leave its binding proteins, allows the accumulation of vitamin A in the form of a membrane-bound retinyl-ester and its regulated mobilization as a retinol-CRBP complex.  相似文献   

7.
Ferrylhemoglobin (X-FeIV-OH, where X denotes an amino acid residue in the globin moiety) has long been suspected as a cytotoxic agent produced by the interaction of oxyhemoglobin (X-FeIIO2) or methemoglobin (X-FeIII) with H2O2 in red blood cells. To date, however, technical difficulties have prevented the identification and quantification of X-FeIV-OH. Oxyhemoglobin exposed to a continuous flux of H2O2 (generated at a rate of 120 microM/min during the glucose oxidase-catalyzed oxidation of glucose) was oxidized to (a) X-FeIV-OH when [X-FeIIO2] less than 75 microM and (b) X-FeIII when [X-FeIIO2] greater than 75 microM (the production of X-FeIII proceeded with intermediate formation of X-FeIV-OH). The reduction of the X-FeIV-OH to X-FeIII could be explained by either of two alternative mechanisms: a O2(-)-mediated X-FeIV-OH---X-FeIII transition or a comproportionation of X-FeIV-OH and X-FeIIO2 to yield X-FeIII (a process mediated by a tyrosine moiety in the hemoprotein). The low rate of X-FeIIO2 autoxidation plus the negligible decrease in the rate of X-FeIII formation in the presence of either native or heat-denatured superoxide dismutase or apoenzyme (1 microM) suggested that O2- does not contribute to the reduction of X-FeIV-OH. Moreover, the dependence of X-FeIII formation on X-FeIIO2 concentration, together with the results of O2 uptake and H2O2 consumption measurements, provide experimental evidence to support the comproportionation reaction. Comproportionation is apparently catalyzed by intermolecular electron transfer between tyrosine residues, since the reaction did not occur when tyrosine residues were blocked by acetylation. Intact red blood cells exposed to the same flow rate of H2O2 presented a spectral profile which could be explained as a transition from X-FeIIO2 to X-FeIII. The intermediate production of X-FeIV-OH was detected by adding Na2S (2 mM), which revealed a spectral profile identical with that obtained with purified X-FeIV-OH. Measurements of concentrations and relative rate constants for the reaction of various intracellular reductants (glutathione, NAD(P)H, uric acid, ascorbic acid) with X-FeIV-OH revealed that comproportionation of X-FeIV-OH with X-FeIIO2 is the favored reaction. Our results provide (to our knowledge) the first definitive evidence for X-FeIV-OH in intact red blood cells. The rapid comproportionation reaction between X-FeIV-OH and X-FeIIO2 (to produce X-FeIII) explains why X-FeIV-OH has been elusive to date.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Sporidesmin (SDMS2), the mycotoxin responsible for 'facial eczema' in ruminants, contains a disulphide group which appears to be intimately involved in its toxic action. The reduced (dithiol) form of sporidesmin has been shown readily to undergo autoxidation in vitro in a reaction which generates superoxide radical (O2-). The autoxidation reaction, which takes place over a wide pH range, is strongly catalysed by trace amounts of copper, although the reaction was inhibited at high concentrations of this metal. Inhibition of the autooxidation of reduced sporidesmin (SDM(SH)2) was also observed in the presence of nickel, cobalt and manganese. Superoxide radical is also generated from SDMS2 itself in a cyclic reduction/autoxidation reaction with glutathione and other thiols; in view of the known toxicity of superoxide and its derivatives, it is suggested that oxygen-free-radicals may be involved in the initiation of the deleterious effects of the mycotoxin.  相似文献   

9.
The antioxidant activity of tannic acid (TA), a plant polyphenol claimed to possess antimutagenic and anticarcinogenic activities, was studied by monitoring (i) 2-deoxyribose degradation (a technique for OH detection), (ii) ascorbate oxidation, (iii) ascorbate radical formation (determined by EPR analysis) and (iv) oxygen uptake induced by the system, which comprised Fe(III) complexes (EDTA, nitrilotriacetic acid (NTA) or citrate as co-chelators), ascorbate and oxygen. TA removes Fe(III) from the co-chelators (in the case of EDTA, this removal is slower than with NTA or citrate), forming an iron-TA complex less capable of oxidizing ascorbate into ascorbate radical or mediating 2-deoxyribose degradation. The effectiveness of TA against 2-deoxyribose degradation, ascorbate oxidation and ascorbate radical formation was substantially higher in the presence of iron-NTA (or iron-citrate) than with iron-EDTA, which is consistent with the known formation constants of the iron complexes with the co-chelators. Oxygen uptake and 2-deoxyribose degradation induced by Fe(II) autoxidation were also inhibited by TA. These results indicate that TA inhibits OH formation induced by Fe(III)/ascorbate/O(2) mainly by arresting Fe(III)-induced ascorbate oxidation and Fe(II) autoxidation (which generates Fe(II) and H(2)O(2), respectively), thus limiting the production of Fenton reagents and OH formation. We also hypothesize that the Fe(II) complex with TA exhibits an OH trapping activity, which explains the effect of TA on the Fenton reaction.  相似文献   

10.
6-Hydroxydopamine (6-OHDA) is a dopaminergic neurotoxin putatively involved in the pathogenesis of Parkinson's disease (PD). Its neurotoxicity has been related to the production of reactive oxygen species. In this study we examine the effects of the antioxidants ascorbic acid (AA), glutathione (GSH), cysteine (CySH), and N-acetyl-CySH (NAC) on the autoxidation and neurotoxicity of 6-OHDA. In vitro, the autoxidation of 6-OHDA proceeds rapidly with the formation of H2O2 and with the participation of the H2O2 produced in the reaction. The presence of AA induced a reduction in the consumption of O2 during the autoxidation of 6-OHDA and a negligible presence of the p-quinone, which demonstrates the efficiency of AA to act as a redox cycling agent. The presence of GSH, CySH, and NAC produced a significant reduction in the autoxidation of 6-OHDA. In vivo, the presence of sulfhydryl antioxidants protected against neuronal degeneration in the striatum, which was particularly remarkable in the case of CySH and was attributed to its capacity to remove the H2O2 produced in the autoxidation of 6-OHDA. These results corroborate the involvement of oxidative stress as the major mechanism in the neurotoxicity of 6-OHDA and the putative role of CySH as a scavenger in relation to PD.  相似文献   

11.
Vitamin A (all-trans-retinol) must be adequately distributed within the mammalian body to produce visual chromophore in the eyes and all-trans-retinoic acid in other tissues. Vitamin A is transported in the blood bound to retinol-binding protein (holo-RBP), and its target cells express an RBP receptor encoded by the Stra6 (stimulated by retinoic acid 6) gene. Here we show in mice that cellular uptake of vitamin A from holo-RBP depends on functional coupling of STRA6 with intracellular lecithin:retinol acyltransferase (LRAT). Thus, vitamin A uptake from recombinant holo-RBP exhibited by wild type mice was impaired in Lrat(-/-) mice. We further provide evidence that vitamin A uptake is regulated by all-trans-retinoic acid in non-ocular tissues of mice. When in excess, vitamin A was rapidly taken up and converted to its inert ester form in peripheral tissues, such as lung, whereas in vitamin A deficiency, ocular retinoid uptake was favored. Finally, we show that the drug fenretinide, used clinically to presumably lower blood RBP levels and thus decrease circulating retinol, targets the functional coupling of STRA6 and LRAT to increase cellular vitamin A uptake in peripheral tissues. These studies provide mechanistic insights into how vitamin A is distributed to peripheral tissues in a regulated manner and identify LRAT as a critical component of this process.  相似文献   

12.
Vitamin A has diverse biological functions and is essential for human survival. STRA6 is the high-affinity membrane receptor for plasma retinol binding protein (RBP), the principle and specific carrier of vitamin A (retinol) in the blood. It was previously shown that STRA6 couples to lecithin retinol acyltransferase (LRAT) and cellular retinol binding protein I (CRBP-I), but poorly to CRBP-II, for retinol uptake from holo-RBP. STRA6 catalyzes both retinol release from holo-RBP, which is responsible for its retinol uptake activity, and the loading of free retinol into apo-RBP, which can cause retinol efflux. Although STRA6-catalyzed retinol efflux into apo-RBP can theoretically deplete cells of retinoid, it is unclear to what extent this efflux happens and in what context. We show here that STRA6 can couple strongly to both CRBP-I and CRBP-II for retinol efflux to apo-RBP. Strikingly, pure apo-RBP can cause almost complete depletion of retinol taken up by CRBP-I in a STRA6-dependent manner. However, if STRA6 encounters both holo-RBP and apo-RBP (as in blood), holo-RBP blocks STRA6-mediated retinol efflux by competing with apo-RBP’s binding to STRA6 and by counteracting retinol efflux with influx. We also found that STRA6 catalyzes efficient retinol exchange between intracellular CRBP-I and extracellular RBP, even in the presence of holo-RBP. STRA6’s retinol exchange activity may serve to refresh the intracellular retinoid pool. This exchange is also a previously unknown function of CRBP-I and distinguishes CRBP-I from LRAT.  相似文献   

13.
The effects of high doses of dietary or intraperitoneally (i.p.) injected retinol acetate on the gilthead seabream (Sparus aurata L.) innate immune system were studied. Gilthead seabream specimens were fed a commercial non-supplemented diet containing 1.75 mg of vitamin A kg(-1) (as control) or the same diet supplemented with 50, 150 or 300 mg of retinol acetate kg(-1) (as vitamin A source). After 1, 2, 4 or 6 weeks, serum samples and head-kidney leucocytes were obtained from each fish. Serum lysozyme activity and myeloperoxidase (MPO) content were unaffected by the vitamin A diet content. The phagocytic and respiratory burst activities of head-kidney leucocytes were established, as well as their myeloperoxidase content. While phagocytosis was not enhanced by dietary vitamin A intake and was even slightly decreased after 2 weeks, respiratory burst activity was enhanced in specimens fed supplements of 150 and 300 mg retinol acetate kg(-1) diet for 1 or 2 weeks. Leucocyte MPO content was also enhanced when seabream were fed the highest vitamin A dose for 2 or 4 weeks and after being fed the 150 or 50 mg supplemented diets for 4 or 6 weeks, respectively. Three different groups of seabream were i.p. injected with 1 ml of phosphate buffer containing an amount of retinol acetate equivalent to the daily dietary supplements from the first experiment (0-control-, 0.05 or 0.30 mg 100 g(-1) biomass). Both injection doses of retinol acetate were toxic for the gilthead seabream which showed hypervitaminic effects. These data show that retinol acetate plays an important role in the gilthead seabream nonspecific cellular immune system due to its antioxidant properties. They also point to the importance of the way in which it is administered, by dietary uptake or intraperitoneal injection.  相似文献   

14.
O2-dependent CA2+ uptake by rat duodenal discs has been characterized and used in a revised assay for 1,25-dihydroxycholecalciferol-induced intestinal Ca2+ transport. Although both muscle and mucosal surfaces are exposed in this free-floating-disc assay, the Ca2+ influx across the muscle surface is small, not O2- or vitamin D-dependent, and can be subtracted out. Depriving the animals of food for 9-14 h before assay increases the O2-dependent uptake by about 75%. Half-saturation values for O2-dependent Ca2+ uptake as determined with this assay are: 0.8mM-Ca2+ (fed) and 0.5mM-Ca2+ (food-deprived) for vitamin D-deficient rats, and 0.9mM-Ca2+ (fed) and 1.5mM-Ca2+ (food-deprived) for rats dosed with 1,25-dihydroxycholecalciferol. The maximum velocity of uptake varies from 6.7nmol of Ca2+ per cm2/min (fed) to 7.0nmol of Ca2+ per cm2/min (food-deprived) for vitamin D-deficient rats and 16.7nmol of Ca2+ per cm2/min (fed) to 29 nmol of Ca2+ per cm2/min (food-deprived) for 1,25-dihydroxycholecalciferol-treated rats. By using a 5 min preincubation and 15 min incubation with 1.0mM-Ca2+, duodenal tissue taken from vitamin D-treated rats shows about a 3-fold increase in O2-dependent Ca2+ uptake when compared with tissue taken from vitamin D-deficient animals. The calcium ionophore A23187, depending on concentration, either has no significant effect on or inhibits the O2-dependent uptake, rather than increasing it. Actinomycin D, at a dose of 2 micrograms/g, inhibits the O2-dependent uptake in intestinal discs from both vitamin D-deficient and vitamin D-treated rats by 58 and 80% respectively, when administered in vivo 3 1/2 h before assay.  相似文献   

15.
The plasma membrane protein STRA6 transports vitamin A from its blood carrier retinol binding protein (RBP) into cells, and it also functions as a cytokine receptor which activates JAK/STAT signaling. We show here that, unlike other cytokine receptors, phosphorylation of STRA6 is not simply induced upon binding of its extracellular ligand. Instead, activation of the receptor is triggered by STRA6-mediated translocation of retinol from serum RBP to an intracellular acceptor, the retinol-binding protein CRBP-I. The observations also demonstrate that the movement of retinol from RBP to CRBP-I, and thus activation of STRA6, is critically linked to the intracellular metabolism of the vitamin. Furthermore, the data show that STRA6 phosphorylation is required for retinol uptake to proceed. Hence, the observations demonstrate that STRA6 orchestrates a multicomponent "machinery" that couples vitamin A homeostasis and metabolism to activation of a signaling cascade and that, in turn, STRA6 signaling regulates the cellular uptake of the vitamin. STRA6 appears to be a founding member of a new class of proteins that may be termed "cytokine signaling transporters."  相似文献   

16.
Chronic dietary administration of 3,3',4,4',5,5'-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA:retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 micrograms), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

17.
Transition metals as catalysts of "autoxidation" reactions   总被引:9,自引:0,他引:9  
Superoxide (O2-), hydrogen peroxide (H2O2), and hydroxyl radical (.OH) produced from the "autoxidation" of biomolecules, such as ascorbate, catecholamines, or thiols, have been implicated in numerous toxicities. However, the direct reaction of dioxygen with the vast majority of biomolecules, including those listed above, is spin forbidden, a condition which imposes a severe kinetic limitation on this reaction pathway. Therefore, an alternate mechanism must be invoked to explain the "autoxidations" reactions frequently reported. Transition metals are efficient catalysts of redox reactions and their reactions with dioxygen are not spin restricted. Therefore it is likely that the "autoxidation" observed for many biomolecules is, in fact, metal catalyzed. In this paper we discuss: 1) the quantum mechanic, thermodynamic, and kinetic aspects of the reactions of dioxygen with biomolecules; 2) the involvement of transition metals in biomolecule oxidation; and 3) the biological implications of metal catalyzed oxidations. We hypothesize that true autoxidation of biomolecules does not occur in biological systems, instead the "autoxidation" of biomolecules is the result of transition metals bound by the biomolecules.  相似文献   

18.
The aim of this paper was to ascertain whether chronic pretreatment with thioacetamide (TAA) might alter the uptake of a load of retinol and dolichol distribution in hepatocytes (HC), hepatic stellate cells (HSC) (Ito-1 and Ito-2 subfractions), Kupffer (KC) and sinusoidal endothelial cells (SEC).The reason why retinol and dolichol content was studied is that their metabolism and transport might be interrelated and that the two isoprenoids might exert different functions in the cells of the hepatic sinusoid.Rats were treated for 2 and 4 months with TAA, a known fibrogenic hepatotoxin, at a low dosage, to produce an early stage of damage. Three days before sacrifice, the rats were given a load of vitamin A, and cells were isolated to investigate its uptake.In HC, the load of retinol was taken up and accumulated, while a decrease in dolichol preceded retinol increase. In HSC, much less of the retinol load was stored than in controls, and dolichol content also decreased. Various minor modifications were seen in KC and SEC.Collectively, the results show that the distribution of these two isoprenoids, which play important roles in cellular differentiation and proliferation, is differently altered in the multiple cell types that line the hepatic sinusoid, and that both isoprenoids seem to participate in the first steps of liver damage.  相似文献   

19.
Kinetic analysis and mechanistic aspects of autoxidation of catechins   总被引:3,自引:0,他引:3  
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号