首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitin is a highly conserved, 76-amino acid polypeptide recently demonstrated to be involved in ATP-dependent protein degradation in mammalian cells. From immunoblot analyses with anti-human-ubiquitin antibodies we have detected the presence of free ubiquitin in green leaves, etiolated shoots, and dry seeds of the higher plant, oats (Avena sativa L.). We also find that crude oat extracts contain protease(s) that rapidly degrade both oat and human ubiquitin (t1/2 approximately 10 min at 27 degrees C). This proteolysis apparently cleaves ubiquitin at the carboxyl-terminal glycine dipeptide and results in inactivation of the molecule with respect to ligation but does not affect its mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using homogenization conditions that preclude this proteolysis (low pH and the addition of the protease inhibitor p-chloromercuribenzoate) and immunoblotting as an assay for the protein, a procedure for the purification of ubiquitin from etiolated oat shoots was developed. Characterization of purified oat ubiquitin by absorption spectra, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing, radioimmunoassay with anti-human-ubiquitin antibodies, and kinetic analyses using the ubiquitin activating enzyme isolated from rabbit liver indicates that this protein is remarkably similar to the mammalian form. Small differences between the oat and human proteins have been observed by amino acid compositional analyses indicating that the two forms are not totally homologous. Immunoblotting of crude oat extracts has revealed the presence of high molecular weight proteins recognized by anti-ubiquitin antibodies that represent ubiquitin-protein conjugates formed in vivo. Taken together, these data provide evidence that higher plants contain a ubiquitin-dependent proteolytic pathway that is mechanistically identical to that present in animals.  相似文献   

2.
The sea urchin embryo is a closed metabolic system in which embryogenesis is accompanied by significant protein degradation. We report results which are consistent with a function for the ubiquitinmediated proteolytic pathway in selective protein degradation during embryogenesis in this system. Quantitative solid- and solution-phase immunochemical assays, employing anti-ubiquitin antibodies, showed that unfertilized eggs of Strongylocentrotus purpuratus have a high content of unconjugated ubiquitin ( ca . 8 × 108 molecules), and also contain abundant conjugates involving ubiquitin and maternal proteins. The absolute content of ubiquitin in the conjugated form increases about 13-fold between fertilization and the pluteus larva stage; 90% or more of embryonic ubiquitin molecules are conjugated to embryonic proteins in hatched blastulae and later-stage embryos. Qualitatively similar results were obtained with embryos of Lytechinus variegatus . The results of pulse-labeling and immunoprecipitation experiments indicate that synthesis of ubiquitin in S. purpuratus is developmentally regulated, with an overall increase in synthetic rate of 12-fold between fertilization and hatching. Regulation is likely to occur at the level of translation, since others have shown that levels of ubiquitin-encoding mRNA remain virtually constant in echinoid embryos during this developmental interval. The sea urchin embryo should be a useful system for characterizing the role of ubiquitination in embryogenesis.  相似文献   

3.
Ubiquitin was radiolabeled by reaction with 125I-Bolton-Hunter reagent and introduced into HeLa cells using erythrocyte-mediated microinjection. The injected cells were then incubated at 45 degrees C for 5 min (reversible heat-shock) or for 30 min (lethal heat-shock). After either treatment, there were dramatic changes in the levels of ubiquitin conjugates. Under normal culture conditions, approximately 10% of the injected ubiquitin is linked to histones, 40% is found in conjugates with molecular weights greater than 25,000, and the rest is unconjugated. After heat-shock, the free ubiquitin pool and the level of histone-ubiquitin conjugates decreased rapidly, and high molecular weight conjugates predominated. Formation of large conjugates did not require protein synthesis; when analyzed by two-dimensional electrophoresis, the major conjugates did not co-migrate with heat-shock proteins before or after thermal stress. Concomitant with the loss of free ubiquitin, the degradation of endogenous proteins, injected hemoglobin, BSA, and ubiquitin was reduced in heat-shocked HeLa cells. After reversible heat-shock, the decrease in proteolysis was small, and both the rate of proteolysis and the size of the free ubiquitin pool returned to control levels upon incubation at 37 degrees C. In contrast, neither proteolysis nor free ubiquitin pools returned to control levels after lethal heat-shock. However, lethally heat-shocked cells degraded denatured hemoglobin more rapidly than native hemoglobin and ubiquitin-globin conjugates formed within them. Therefore, stabilization of proteins after heat-shock cannot be due to the loss of ubiquitin conjugation or inability to degrade proteins that form conjugates with ubiquitin.  相似文献   

4.
Marta Izquierdo 《Chromosoma》1994,103(3):193-197
Ubiquitin genes are found in Drosophila either as a repeat block or as gene fusions with ribosomal proteins. Here is described the location of a new repeat block in the X chromosome that is present in the strain Canton S but absent in Vallecas. There are also two ubiquitin-ribosomal protein fusion genes located at regions 97A of chromosome 3R and 31E of 2L. Using an anti-ubiquitin antibody in Drosophila polytene chromosomes it is shown that ubiquitin is mainly associated with the compact and stabilized structure that forms the bands rather than with the more decondensed and destabilized protein-DNA structure that forms interbands and puffs.  相似文献   

5.
Ubiquitin is a small protein involved in an ATP-dependent proteolytic pathway in all eukaryotes. This pathway has been demonstrated to be required for both the bulk degradation of cellular proteins and the targeted proteolysis of specific regulatory proteins. We have investigated the presence of ubiquitin (Ub) and the ubiquitin-conjugating system in dormant and activated tubers of Helianthus tuberosus L. cv. OB 1 that represent a widely used model system for studies on the cell cycle in plants. Immunoblot experiments revealed the presence of free ubiquitin and ubiquitin conjugates. Furthermore, the presence of an active ubiquitin-conjugating system, both time- and ATP-dependent, was demonstrated by incubation with 125I-labeled ubiquitin. A few proteins able to form thiol esters with 125I-Ub and probably corresponding to ubiquitin-conjugating enzymes, E1 and E2s, were also found. During the first cell cycle, several proteins become ubiquitinated. In particular a large amount of protein conjugates was present at 6 h when the lowest content of free ubiquitin was found. Subsequently, a dramatic decrease in ubiquitin conjugates occurred. It is well known that cell cycle progression in eukaryotes depends on cyclin levels and cyclin B degradation is ubiquitin- and ATP-dependent. By immunoblot experiments we showed that cyclin B in H. tuberosus is present as at least two protein bands of 50 and 54 kDa and that their amounts undergo profound changes during the cell cycle. The 54-kDa band was also recognized by an anti-ubiquitin antibody. These data seem to indicate that in H. tuberosus activated tuber slices, the ATP-dependent ubiquitin proteolytic pathway is involved in the dedifferentiation process occurring after the artificial break of dormancy when the cells acquire the characteristics linked to the meristematic state.  相似文献   

6.
Ubiquitin is a 8.5-kDa peptide that tags other proteins for proteasomal degradation. It has been proposed that ubiquitination might be responsible for the elimination of defective spermatozoa during transit through the epididymis in humans and cattle, but its exact biological function in seminal plasma has not yet been clarified. In the domestic cat (Felis catus), the percentage of immature, unviable, and abnormal spermatozoa decreases during the epididymal transit, indicating the existence of a mechanism that removes defective spermatozoa. Magnetic cell separation techniques, based on the use of magnetic beads coated with anti-ubiquitin antibodies, may allow the selective capture of ubiquitinated spermatozoa from semen, thus contributing to the identification of a potential correlation between semen quality and ubiquitination process. Moreover, the selective identification of all the ubiquitinated proteins in different epididymal regions could give a better understanding of the ubiquitin role in feline sperm maturation. The aims of this study were as follows: (1) to verify the possibility of separating ubiquitinated spermatozoa with magnetic ubiquitin beads and identify the morphological and acrosomal differences between whole sample and unbound gametes, (2) to characterize all the ubiquitinated proteins in spermatozoa retrieved in the three epididymal regions by a proteomic approach. The data indicated the presence of ubiquitinated proteins in cat epididymal semen. However, a correlation between abnormal and ubiquitinated spermatozoa has not been found, and ubiquitin cannot be considered as a biomarker of quality of epididymal feline spermatozoa. To the author's knowledge, this is the first identification of all the ubiquitinated proteins of cat spermatozoa collected from different epididymal regions. The proteomic pattern allows a further characterization of cat epididymal semen and represents a contribute to a better understanding of the ubiquitin role in feline sperm maturation.  相似文献   

7.
Cycloheximide acts at the large subunit of the ribosome to inhibit translation. Here we report that ubiquitin levels are critical for the survival of Saccharomyces cerevisiae cells in the presence of cycloheximide: ubiquitin overexpression confers resistance to cycloheximide, while a reduced ubiquitin level confers sensitivity. Consistent with these findings, ubiquitin is unstable in yeast (t(1/2) = 2 h) and is rapidly depleted upon cycloheximide treatment. Cycloheximide does not noticeably enhance ubiquitin turnover, but serves principally to block ubiquitin synthesis. Cycloheximide also induces UBI4, the polyubiquitin gene. The cycloheximide-resistant phenotype of ubiquitin overexpressors is also characteristic of partial-loss-of-function proteasome mutants. Ubiquitin is stabilized in these mutants, which may account for their cycloheximide resistance. Previous studies have reported that ubiquitin is destabilized in the absence of Ubp6, a proteasome-associated deubiquitinating enzyme, and that ubp6 mutants are hypersensitive to cycloheximide. Consistent with the model that cycloheximide-treated cells are ubiquitin deficient, the cycloheximide sensitivity of ubp6 mutants can be rescued either by ubiquitin overexpression or by mutations in proteasome subunit genes. These results also show that ubiquitin wasting in ubp6 mutants is proteasome mediated. Ubiquitin overexpression rescued cells from additional translational inhibitors such as anisomycin and hygromycin B, suggesting that ubiquitin depletion may constitute a widespread mechanism for the toxicity of translational inhibitors.  相似文献   

8.
9.
Ubiquitin is the most phylogenetically conserved protein known. This 8,500 Da polypeptide can be covalently attached to cellular proteins as a posttranslational modification. In most cases, the addition of multiple ubiquitin adducts to a protein targets it for rapid degradation by a multisubunit protease known as the 26S proteasome. While the ubiquitin/26S proteasome pathway is responsible for the degradation of the bulk of cellular proteins during homeostasis, it may also be responsible for the rapid loss of protein during the programmed death of certain cells, such as skeletal muscle during insect metamorphosis. In addition, alterations in the expression and regulation of ubiquitin may play significant roles in pathological disorders. For example, dramatic increases in ubiquitin and ubiquitin-protein conjugates are observed in a wide variety of neurodegenerative disorders, including Alzheimer's disease. Patients suffering from the autoimmune disease systemic lupus erythematosus generate antibodies reacting with ubiquitin and ubiquitinated histones. At present, it is not known whether these changes in ubiquitin expression and regulation initiate pathological changes in these diseases or if they are altered as a consequence of these disorders.  相似文献   

10.
Attachment of ubiquitin to cellular proteins frequently targets them to the 26S proteasome for degradation. In addition, ubiquitination of cell surface proteins stimulates their endocytosis and eventual degradation in the vacuole or lysosome. In the yeast Saccharomyces cerevisiae, ubiquitin is a long-lived protein, so it must be efficiently recycled from the proteolytic intermediates to which it becomes linked. We identified previously a yeast deubiquitinating enzyme, Doa4, that plays a central role in ubiquitin-dependent proteolysis by the proteasome. Biochemical and genetic data suggest that Doa4 action is closely linked to that of the proteasome. Here we provide evidence that Doa4 is required for recycling ubiquitin from ubiquitinated substrates targeted to the proteasome and, surprisingly, to the vacuole as well. In the doa4Delta mutant, ubiquitin is strongly depleted under certain conditions, most notably as cells approach stationary phase. Ubiquitin depletion precedes a striking loss of cell viability in stationary phase doa4Delta cells. This loss of viability and several other defects of doa4Delta cells are rescued by provision of additional ubiquitin. Ubiquitin becomes depleted in the mutant because it is degraded much more rapidly than in wild-type cells. Aberrant ubiquitin degradation can be partially suppressed by mutation of the proteasome or by inactivation of vacuolar proteolysis or endocytosis. We propose that Doa4 helps recycle ubiquitin from both proteasome-bound ubiquitinated intermediates and membrane proteins destined for destruction in the vacuole.  相似文献   

11.
The selective degradation of proteins, an essential process of any developmental program, may entail conjugation of the protein to be destroyed to the polypeptide ubiquitin. Experiments were designed to localize ubiquitin as a first step in determining whether this molecule is crucial for certain developmental processes in plant tissues and cells. Antibodies to ubiquitinated protein were detected on tissue prints of cross sections of bean petioles (Phaseolus vulgaris, Fabaceae), cotton hypocotyls (Gossypium hirsutum, Malvaceae), and Coleus stems (Coleus x hybridus, Lamiaceae). For most of the material investigated, there appears to be an accumulation of ubiquitin antibodies in vascular tissues, but not preferentially in the abscission zone of bean petioles. Vascular localization was confirmed using immunohistochemical methods on fixed and sectioned internodal tissues of Coleus. Antibodies to ubiquitin are detected in parenchyma cells of the cortex and pith, but are most concentrated in the xylem, especially secondary xylem, and in the cambial region, and in the phloem. Thus, ubiquitin accumulates in certain vascular tissues, some of which may be undergoing programmed cell death. Ubiquitin can also be detected in nondifferentiating cells, and its level is elevated in rapidly dividing cambial cells.  相似文献   

12.
Ubiquitin in stressed chicken embryo fibroblasts   总被引:8,自引:0,他引:8  
Ubiquitin, a small 76-amino acid protein which is highly conserved in eukaryotic cells, occurs in several forms other than the free polypeptide. Among these are protein conjugates in which ubiquitin is covalently linked in lysylpeptide bond to lysl residues of other proteins and fusion proteins in which the amino-terminal domain is the precise ubiquitin sequence. Ubiquitin plays a role in cellular proteolytic degradation and in chromatin structure and has been postulated to be involved in the induction of a set of proteins which function during the cellular response to various kinds of environmental stress. We have measured the various forms of ubiquitin in cultures of chicken embryo fibroblasts under normal growth conditions and after treatment with a thermal or chemical stress. Levels of free ubiquitin fell slightly, ubiquitin conjugate levels rose shortly after stress began, and both then increased substantially as one of the cell's ubiquitin-encoding genes was activated by stress. The level of a protein synthesized as the carboxyl-terminal domain of one ubiquitin fusion protein was unchanged by a heat stress. The most dramatic effect was seen in the rapid disappearance of the ubiquitinated form of histone H2A, one of the major ubiquitin conjugates in cells in the interphase portion of their growth cycle. A significant rise in protein turnover was detected as a result of the stress, but occurred only when cells were removed from the stress condition. These results suggest that ubiquitin plays an important role both during and after stress, but fails to support hypotheses for ubiquitin and proteolysis in the activation of stress genes.  相似文献   

13.
14.
Ubiquitin: structures, functions, mechanisms   总被引:23,自引:0,他引:23  
Ubiquitin is the founding member of a family of structurally conserved proteins that regulate a host of processes in eukaryotic cells. Ubiquitin and its relatives carry out their functions through covalent attachment to other cellular proteins, thereby changing the stability, localization, or activity of the target protein. This article reviews the basic biochemistry of these protein conjugation reactions, focusing on ubiquitin itself and emphasizing recent insights into mechanism and specificity.  相似文献   

15.
Ubiquitin is a highly conserved, 76-amino acid, eukaryotic protein. Its widely accepted role as a proteolytic cofactor depends on its unique ability to covalently ligate to other cellular proteins. While there is good evidence for the existence of such ubiquitinated proteins in the cytosolic and nuclear compartments, relatively little is known about the presence of free ubiquitin and ubiquitinated proteins in other subcellular compartments. This is especially true of higher plants, which have not previously been the subject of extensive biochemical subcellular localizations of ubiquitinated proteins. We extracted cell wall proteins and purified nuclei, vacuoles, chloroplasts, and microsomes from chlorophyllous tissues of Arabidopsis. Immunoblot analyses were used to compare the profiles of ubiquitinated proteins from purified subcellular fractions to those from unfractionated extracts. Purified nuclei contained, in addition to a complex mixture of high molecular mass ubiquitinated proteins, a strongly immunoreactive 28-kDa protein. In the apoplastic extract, we did not detect any ubiquitinated proteins enriched above the background level of those due to cytosolic contamination. Vacuoles appeared to contribute significantly to the ubiquitinated proteins present in the whole protoplast extract. At least three high molecular mass ubiquitinated proteins were unique to the vacuolar extract. Chloroplast stromal proteins did not react specifically with anti-ubiquitin antibodies. When microsomal ubiquitinated proteins were compared to those found in a whole protoplast extract, a distinct pattern was evident. Microsomal ubiquitinated proteins were not visible in the 10,000 x g supernatant used to prepare the 100,000 x g pellet, indicating that they were probably low abundance proteins in the protoplast extract.  相似文献   

16.
Ikeda F  Crosetto N  Dikic I 《Cell》2010,143(5):677-681
Ubiquitin signals and ubiquitin-binding domains are implicated in almost every cellular process, but how is their functionality achieved in cells? We assess recent advances in monitoring the dynamics and specificity of ubiquitin networks in vivo and discuss challenges ahead.  相似文献   

17.
18.
The effect of restrictive temperature on ubiquitin conjugation activity has been studied in cells of ts20, a temperature-sensitive cell cycle mutant of the Chinese hamster cell line E36. Ts20 is arrested in early G2 phase at nonpermissive temperature. Immunoblotting with antibodies to ubiquitin conjugates shows that conjugates disappear rapidly at restrictive temperatures in ts20 mutant but not in wild type E36 cells. The incorporation of 125I-ubiquitin into permeabilized ts20 cells is temperature-sensitive. Addition of extracts of another G2 phase mutant, FM3A ts85, with a temperature-sensitive ubiquitin activation enzyme (E1), to permeabilized ts20 cells at restrictive temperatures fails to complement their ubiquitin ligation activity. This indicates that the lesions in the two mutants are similar. Purified E1 from reticulocytes restores the conjugation activity of heat-inactivated permeabilized ts20 cells. Ubiquitin conjugation activity of cell-free extracts of ts20 cells was temperature-sensitive and could be restored by adding purified reticulocyte E1. Purified reticulocyte E2 or E3, on the other hand, did not restore the ubiquitin conjugation activity of heat-treated ts20 extracts. These results are consistent with the conclusion that ts20 has temperature-sensitive ubiquitin-activating enzyme (E1). The fact that two E1 mutants (ts20 and ts85) derived from different cell lines are arrested at the S/G2 boundary at restrictive temperatures strongly indicates that ubiquitin ligation is necessary for passage through this part of the cell cycle. The temperature thresholds of heat shock protein synthesis of ts20 and wild type E36 cells were identical. The implications of these findings with respect to a suggested role of ubiquitin in coupling between protein denaturation and the heat shock response are discussed.  相似文献   

19.
Ubiquitin coding sequences were isolated from a human genomic library and two cDNA libraries. One human ubiquitin gene consists of 2055 nucleotides and codes for a polyprotein consisting of 685 amino acid residues. The polyprotein contains nine direct repeats of the ubiquitin amino acid sequence and the last ubiquitin sequence is extended with an additional valyl residue at the C-terminal end. No spacer sequences separate the ubiquitin repeats and the coding regions are not interrupted by intervening sequences. This particular gene is transcribed since cDNAs corresponding to the genomic sequence have been isolated. At least two more types of ubiquitin genes are encoded in the human genome, one coding for an ubiquitin monomer while another presumably codes for three or four direct repeats of the ubiquitin sequence. Human DNA contains many copies of the ubiquitin sequence. Ubiquitin is therefore encoded in the human genome as a multigene family.  相似文献   

20.
Ubiquitin: not just for proteasomes anymore   总被引:18,自引:0,他引:18  
Ubiquitin is a small protein that can be covalently linked to itself or other proteins, either as single ubiquitin molecules or as chains of polyubiquitin. Addition of ubiquitin to a target protein requires a series of enzymatic activities (by ubiquitin-activating, -conjugating and -ligating enzymes). The first function attributed to ubiquitin was the covalent modification of misfolded cytoplasmic proteins, thereby directing proteasome-dependent proteolysis. More recently, additional functions have been ascribed to ubiquitin and ubiquitin-related proteins. Ubiquitin directs specific proteins through the endocytic pathway by modifying cargo proteins, and possibly also components of the cytoplasmic protein trafficking machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号