首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli were stressed by prolonged incubation in water microcosms until it was no longer possible to observe colony formation when samples were plated on nonselective medium. Overnight incubation of samples in nutrient-rich broth medium supplemented with growth factors, however, allowed resuscitation of stressed and viable but nonculturable cells so that subsequent plating yielded observable colonies for significantly extended periods of time. The growth factors were (i) the trihydroxamate siderophore ferrioxamine E (for Salmonella only), (ii) the commercially available antioxidant Oxyrase, and (iii) the heat-stable autoinducer of growth secreted by enterobacterial species in response to norepinephrine. Analysis of water microcosms with the Bioscreen C apparatus confirmed that these supplements enhanced recovery of cells in stressed populations; enterobacterial autoinducer was the most effective, promoting resuscitation in populations that were so heavily stressed that ferrioxamine E or Oxyrase had no effect. Similar results were observed in Bioscreen analysis of bacterial populations stressed by heating. Patterns of resuscitation of S. enterica serovar Typhimurium rpoS mutants from water microcosms and heat stress were qualitatively similar, suggesting that the general stress response controlled by the σs subunit of RNA polymerase plays no role in autoinducer-dependent resuscitation. Enterobacterial autoinducer also resuscitated stressed populations of Citrobacter freundii and Enterobacter agglomerans.  相似文献   

2.
Storage of Salmonella enterica serovar Typhimurium strains in soil and water microcosms resulted in loss of culturability on standard plating media. Prior incubation in buffered peptone water supplemented with ferrioxamine E markedly extended the time that bacteria were recoverable by plating, except in the case of mutants deficient in ferrioxamine E uptake.  相似文献   

3.
Storage of Salmonella enterica serovar Typhimurium strains in soil and water microcosms resulted in loss of culturability on standard plating media. Prior incubation in buffered peptone water supplemented with ferrioxamine E markedly extended the time that bacteria were recoverable by plating, except in the case of mutants deficient in ferrioxamine E uptake.  相似文献   

4.
Salmonella enterica serovar Typhimurium DT104 11601 was tested for its ability to maintain viability in minimal, chemically defined solutions. Periodic monitoring of growth and survival in microcosms of different ion concentrations, maintained at various temperatures, showed a gradual decline in culturable organisms ( approximately 235 days) at 5 degrees C. Organisms maintained at a higher temperature (21 degrees C) showed continuous, equivalent CFU per milliliter ( approximately 10(6)) up to 400 days after inoculation. Fluorescence microscopy with Baclight revealed that nonculturable cells were actually viable, while observations with scanning electron microscopy showed that the cells had retained their structural integrity. Temperature upshift (56 degrees C +/- 0.5, 15 s) of the nonculturable organisms (5 degrees C) in Trypticase soy broth followed by immediate inoculation onto Trypticase soy agar (TSA) gave evidence of resuscitation. Interestingly, S. enterica serovar Typhimurium DT104 from the microcosms at either 5 degrees C (1 to 200 days) or 21 degrees C (1 to 250 days) did not show enhanced growth after intermittent inoculation onto catalase-supplemented TSA. Furthermore, cells from 21 degrees C microcosms exposed to oxidative and osmotic stress showed greater resistance to stresses over increasing times of exposure than did recently grown cells. It is possible that the exceptional survivability and resilience of this particular strain may in part reflect the growing importance of this multidrug-resistant organism, in general, as a cause of intestinal disease in humans. The fact that S. enterica serovar Typhimurium DT104 11601 is capable of modifying its physiological characteristics, including entry into and recovery from the viable but nonculturable state, suggests the overall possibility that S. enterica serovar Typhimurium DT104 may be able to respond uniquely to various adverse environmental conditions.  相似文献   

5.
The study was undertaken to understand effects and survival of S. enterica subspecies enterica serovar Typhimurium (S. Typhimurium), a zoonotic serovar, on maize seed germination and plant growth. All the four strains of S. enterica subspecies enterica serovar Typhimurium significantly reduced germination of maize seeds in sprouting plates as well as in soil. About > or =2.7x10(3) Salmonella cfu ml(-1) of soaking water, while > or =2.7x10(7) Salmonella cfu g(-1) soil were required to significantly inhibit germination of maize. Similar inhibition of germination could be observed using > or = 16 mg of bacteria free Salmonella cell lysate (CL) protein per g of soil or > or =0.5 mg of CL protein per ml of soaking water in sprouting plates. At the constant dose of 3.6x10(7) to 3.8x10(7) Salmonella cfu or 5 mg cell lysate protein ml(-1) of soaking water, four strains of Salmonella significantly reduced germination, however difference between strains was insignificant. After germination too, maize growth was affected both by Salmonella organism and CL with little strain-to-strain variation. All Salmonella persisted in growing plants from 15 to 35 days of plant age and up to 190 days in soil. Maize plants once grown for a week in sterile soil were resistant to invasion of S. enterica subspecies enterica serovar Typhimurium in their leaves even in doses as high as 7.6x10(9) cfu g(-1) of soil. Salmonella persisted better and longer in plants grown from contaminated seed sown in loam soil, but rarely in plants grew in sandy soil. All maize plants had Salmonella in their stumps even after 35 days of sowing irrespective of kind of soil, primary source of infection (soil or seed) and type of S. enterica subspecies enterica serovar Typhimurium strain. The study revealed that Salmonella is not only zoonotic but a phytopathogen also.  相似文献   

6.
Catecholamines may stimulate enteric bacteria including the foodborne pathogen Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) by two mechanisms in vivo: as a quorum sensing signal and a supplier of iron. To identify genes of Salmonella Typhimurium that respond to norepinephrine, transposon mutagenesis and DNA microarray analysis were performed. Insertional mutations in the following genes decreased norepinephrine-enhanced growth: degS, entE, entF, fes, gpmA, hfq, STM3846. DNA microarray and real-time RT-PCR analyses revealed a decrease in the expression of several genes involved in iron acquisition and utilization during norepinephrine exposure, signifying the iron-limiting conditions of serum-SAPI minimal medium and the siderophore-like activity of norepinephrine. Unlike the wild-type parent strain, growth of neither a fepA iroN cirA mutant nor a fepC mutant, harboring deletional mutations in the outer and inner membrane transporters of enterochelin, respectively, was enhanced by norepinephrine. However, growth of the fepC and the fepA iroN cirA mutants could be rescued by an alternative siderophore, ferrioxamine E, further validating the role of norepinephrine in supplying the organism with iron via the catecholate-specific iron transport system. Contrary to previous reports using small animal models, the fepA iroN cirA mutant of Salmonella Typhimurium colonized the swine gastrointestinal tract, as did the fepC mutant.  相似文献   

7.
The ability of salmonellae to become internalized and to survive and replicate in amoebae was evaluated by using three separate serovars of Salmonella enterica and five different isolates of axenic Acanthamoeba spp. In gentamicin protection assays, Salmonella enterica serovar Dublin was internalized more efficiently than Salmonella enterica serovar Enteritidis or Salmonella enterica serovar Typhimurium in all of the amoeba isolates tested. The bacteria appeared to be most efficiently internalized by Acanthamoeba rhysodes. Variations in bacterial growth conditions affected internalization efficiency, but this effect was not altered by inactivation of hilA, a key regulator in the expression of the invasion-associated Salmonella pathogenicity island 1. Microscopy of infected A. rhysodes revealed that S. enterica resided within vacuoles. Prolonged incubation resulted in a loss of intracellular bacteria associated with morphological changes and loss of amoebae. In part, these alterations were associated with hilA and the Salmonella virulence plasmid. The data show that Acanthamoeba spp. can differentiate between different serovars of salmonellae and that internalization is associated with cytotoxic effects mediated by defined Salmonella virulence loci.  相似文献   

8.
In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (a(w)). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low a(w) for long periods, but minimum humectant concentrations of 8% NaCl (a(w), 0. 95), 96% sucrose (a(w), 0.94), and 32% glycerol (a(w), 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal a(w), incubation at 37 degrees C resulted in more rapid loss of viability than incubation at 21 degrees C. At a(w) values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 microm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-a(w) conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low a(w) highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low a(w) (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-a(w) storage. If Salmonella strains form filaments in food products that have low a(w) values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring.  相似文献   

9.
Passage through the digestive tract exposes Salmonella enterica to high concentrations of bile salts, powerful detergents that disrupt biological membranes. Mutations in the wecD or wecA gene, both of which are involved in the synthesis of enterobacterial common antigen (ECA), render S. enterica serovar Typhimurium sensitive to the bile salt deoxycholate. Competitive infectivity analysis of wecD and wecA mutants in the mouse model indicates that ECA is an important virulence factor for oral infection. In contrast, lack of ECA causes only a slight decrease in Salmonella virulence during intraperitoneal infection. A tentative interpretation is that ECA may contribute to Salmonella virulence by protecting the pathogen from bile salts.  相似文献   

10.
Sashinami H  Yamamoto T  Nakane A 《Cytokine》2006,33(4):212-218
ClpXP, serine protease-disrupted mutant of Salmonella enterica serovar Typhimurium chi3306 exhibits attenuated but persistent infection in mice. During infection with S. enterica serovar Typhimurium ClpXP-disrupted mutant, gamma interferon (IFN-gamma) produced by CD4+ cells was up-regulated on day 10 and tumor necrosis factor-alpha (TNF-alpha) produced by CD8+ cells was up-regulated on day 30 after infection. Treatment of monoclonal antibodies against cytokines showed that IFN-gamma and interleukin 10 (IL-10) were involved in maintenance of growth of S. Typhimurium mutant on day 10 after infection, and IFN-gamma, TNF-alpha and transforming growth factor-beta (TGF-beta) were involved in maintenance of growth of this bacterium on day 30 after infection. During persistent infection of S. Typhimurium mutant, IFN-gamma, TNF-alpha, IL-10 and TGF-beta may play different roles to maintain the persistent infection. The cytokine balance might be important in persistent infection with ClpXP-disrupted S. enterica serovar Typhimurium.  相似文献   

11.
In Salmonella enterica serovar Typhimurium, sigma(28) and anti-sigma factor FlgM are regulatory proteins crucial for flagellar biogenesis and motility. In this study, we used S. enterica serovar Typhimurium as an in vivo heterologous system to study sigma(28) and anti-sigma(28) interactions in organisms where genetic manipulation poses a significant challenge due to special growth requirements. The chromosomal copy of the S. enterica serovar Typhimurium sigma(28) structural gene fliA was exchanged with homologs of Aquifex aeolicus (an extreme thermophile) and Chlamydia trachomatis (an obligate intracellular pathogen) by targeted replacement of a tetRA element in the fliA gene location using lambda-Red-mediated recombination. The S. enterica serovar Typhimurium hybrid strains showed sigma(28)-dependent gene expression, suggesting that sigma(28) activities from diverse species are preserved in the heterologous host system. A. aeolicus mutants defective for sigma(28)/FlgM interactions were also isolated in S. enterica serovar Typhimurium. These studies highlight a general strategy for analysis of protein function in species that are otherwise genetically intractable and a straightforward method of chromosome restructuring using lambda-Red-mediated recombination.  相似文献   

12.
To better understand the roles of gammadelta T cells in mucosal infection, we utilized Salmonella enterica serovar Typhimurium (Salmonella serovar Typhimurium) infection in cattle as it closely approximates Salmonella serovar Typhimurium-induced enterocolitis in humans. Protein and gene expression in alphabeta and gammadelta T cells derived from lymphatic ducts draining the gut mucosa in Salmonella serovar Typhimurium-infected calves were analyzed. In calves with enterocolitis, general gene expression trends in gammadelta T cells suggested subtle activation and innate response, whereas alphabeta T cells were relatively quiescent following Salmonella serovar Typhimurium infection. An increase in IL-2R alpha expression on gammadelta T cells from infected calves and results from in vitro assays suggested that gammadelta T cells were primed by Salmonella serovar Typhimurium LPS to better respond to IL-2 and IL-15. Together with gene expression trends in vivo, these data support early priming activation of target tissue gammadelta T cells during Salmonella serovar Typhimurium infection.  相似文献   

13.
To gain further insight into the mechanism by which lactobacilli develop antimicrobial activity, we have examined how Lactobacillus acidophilus LB inhibits the promoted cellular injuries and intracellular lifestyle of Salmonella enterica serovar Typhimurium SL1344 infecting the cultured, fully differentiated human intestinal cell line Caco-2/TC-7. We showed that the spent culture supernatant of strain LB (LB-SCS) decreases the number of apical serovar Typhimurium-induced F-actin rearrangements in infected cells. LB-SCS treatment efficiently decreased transcellular passage of S. enterica serovar Typhimurium. Moreover, LB-SCS treatment inhibited intracellular growth of serovar Typhimurium, since treated intracellular bacteria displayed a small, rounded morphology resembling that of resting bacteria. We also showed that LB-SCS treatment inhibits adhesion-dependent serovar Typhimurium-induced interleukin-8 production.  相似文献   

14.
The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect.  相似文献   

15.
We performed an epidemiological study on Salmonella isolated from raw plant-based feed in Spanish mills. Overall, 32 different Salmonella serovars were detected. Despite its rare occurrence in humans and animals, Salmonella enterica serovar California was found to be the predominant serovar in Spanish feed mills. Different typing techniques showed that isolates of this serovar were genetically closely related, and comparative genomic hybridization using microarray technology revealed 23 S. enterica serovar Typhimurium LT2 gene clusters that are absent from serovar California.  相似文献   

16.
The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium.  相似文献   

17.
Genomic subtractive hybridization was performed between Salmonella enterica serovar Typhimurium LT2 and DT104 to search for novel Salmonella serovar Typhimurium DT104-specific sequences. The subtraction resulted mainly in the isolation of DNA fragments with sequence similarity to phages. Two fragments identified were associated with possible virulence factors. One fragment was identical to irsA of Salmonella serovar Typhimurium ATCC 14028, which is suggested to be involved in macrophage survival. The other fragment was homologous to HldD, an Escherichia coli O157:H7 lipopolysaccharide assembly-related protein. Five selected DNA fragments-irsA, the HldD homologue, and three fragments with sequence similarity to prophages-were tested for their presence in 17 Salmonella serovar Typhimurium DT104 isolates and 27 non-DT104 isolates by PCR. All five selected DNA fragments were Salmonella serovar Typhimurium DT104 specific among the serovar Typhimurium isolates tested. These DNA fragments can be useful for better detection and typing of Salmonella serovar Typhimurium DT104.  相似文献   

18.
Genetic elements specific to recent and contemporary epidemic strains of Salmonella enterica were identified using comparative genomic analysis. Two epidemic multidrug-resistant (MDR) strains, MDR Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) and cephalosporin-resistant MDR Salmonella enterica serovar Newport, and an epidemic pansusceptible strain, Salmonella serovar Typhimurium DT160, were subjected to Salmonella gene microarray and suppression subtractive hybridization analyses. Their genome contents were compared with those of coexisting sporadic strains matched by serotype, geographic and temporal distribution, and host species origin. These paired comparisons revealed that epidemic strains of S. enterica had specific genes and gene regions that were shared by isolates of the same subtype. Most of these gene sequences are related to mobile genetic elements, including phages, plasmids, and plasmid-like and transposable elements, and some genes may encode proteins conferring growth or survival advantages. The emergence of epidemic MDR strains may therefore be associated with the presence of fitness-associated genetic factors in addition to their antimicrobial resistance genes.  相似文献   

19.
The Gifsy-2 temperate bacteriophage of Salmonella enterica serovar Typhimurium contributes significantly to the pathogenicity of strains that carry it as a prophage. Previous studies have shown that Gifsy-2 encodes SodCI, a periplasmic Cu/Zn superoxide dismutase, and at least one additional virulence factor. Gifsy-2 encodes a Salmonella pathogenicity island 2 type III secreted effector protein. Sequence analysis of the Gifsy-2 genome also identifies several open reading frames with homology to those of known virulence genes. However, we found that null mutations in these genes did not individually have a significant effect on the ability of S. enterica serovar Typhimurium to establish a systemic infection in mice. Using deletion analysis, we have identified a gene, gtgE, which is necessary for the full virulence of S. enterica serovar Typhimurium Gifsy-2 lysogens. Together, GtgE and SodCI account for the contribution of Gifsy-2 to S. enterica serovar Typhimurium virulence in the murine model.  相似文献   

20.
Salmonella enterica consists of over 2,000 serovars that are major causes of morbidity and mortality associated with contaminated food. Despite similarities among serovars of Salmonella enterica, many demonstrate unique host specificities, epidemiological characteristics, and clinical manifestations. One of the unique epidemiological characteristics of the serovar Enteritidis is that it is the only bacterium routinely transmitted to humans through intact chicken eggs. Therefore, Salmonella enterica serovar Enteritidis must be able to persist inside chicken eggs to be transmitted to humans, and its survival in egg is important for its transmission to the human population. The ability of Salmonella enterica serovar Enteritidis to survive in and transmit through eggs may have contributed to its drastically increased prevalence in the 1980s and 1990s. In the present study, using transposon-mediated mutagenesis, we have identified genes important for the association of Salmonella enterica serovar Enteritidis with chicken eggs. Our results indicate that genes involved in cell wall structural and functional integrity, and nucleic acid and amino acid metabolism are important for Salmonella enterica serovar Enteritidis to persist in egg albumen. Two regions unique to Salmonella enterica serovar Enteritidis were also identified, one of which enhanced the survival of a Salmonella enterica serovar Typhimurium isolate in egg albumen. The implication of our results to the serovar specificity of Salmonella enterica is also explored in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号