首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The T cell, Ig domain, and mucin domain-1 (TIM-1) gene is associated with Th2 T cell responses and human atopic diseases. The mechanism by which TIM-1 influences T cell responses remains unknown. We demonstrate that TIM-1 is recruited to the TCR-signaling complex via association with CD3. TIM-1 up-regulates TCR-associated signaling events, including phosphorylation of Zap70 and IL-2-inducible T cell kinase. This activity requires TIM-1 tyrosine phosphorylation. TIM-1 expression induces formation of a novel complex that includes PI3K and ITK. Finally, the consequences of TIM-1 activation include increased expression of effector cytokines. These results demonstrate that TIM-1 is a critical component of the human T cell response and provide a mechanistic hypothesis for the role of TIM-1 in disease.  相似文献   

2.
The TAPR locus containing the TIM gene family is implicated in the development of atopic inflammation in mouse, and TIM-1 allelic variation has been associated with the incidence of atopy in human patient populations. In this study, we show that manipulation of the TIM-1 pathway influences airway inflammation and pathology. Anti-TIM-1 mAbs recognizing distinct epitopes differentially modulated OVA-induced lung inflammation in the mouse. The epitopes recognized by these Abs were mapped, revealing that mAbs to both the IgV and stalk domains of TIM-1 have therapeutic activity. Unexpectedly, mAbs recognizing unique epitopes spanning exon 4 of the mucin/stalk domains exacerbated immune responses. Using Ag recall response studies, we demonstrate that the TIM-1 pathway acts primarily by modulating the production of T(H)2 cytokines. Furthermore, ex vivo cellular experiments indicate that TIM-1 activity controls CD4(+) T cell activity. These studies validate the genetic hypothesis that the TIM-1 locus is linked to the development of atopic disease and suggest novel therapeutic strategies for targeting asthma and other atopic disorders.  相似文献   

3.
T cell Ig domain and mucin domain (TIM)-3 has previously been established as a central regulator of Th1 responses and immune tolerance. In this study, we examined its functions in allograft rejection in a murine model of vascularized cardiac transplantation. TIM-3 was constitutively expressed on dendritic cells and natural regulatory T cells (Tregs) but only detected on CD4(+)FoxP3(-) and CD8(+) T cells in acutely rejecting graft recipients. A blocking anti-TIM-3 mAb accelerated allograft rejection only in the presence of host CD4(+) T cells. Accelerated rejection was accompanied by increased frequencies of alloreactive IFN-γ-, IL-6-, and IL-17-producing splenocytes, enhanced CD8(+) cytotoxicity against alloantigen, increased alloantibody production, and a decline in peripheral and intragraft Treg/effector T cell ratio. Enhanced IL-6 production by CD4(+) T cells after TIM-3 blockade plays a central role in acceleration of rejection. Using an established alloreactivity TCR transgenic model, blockade of TIM-3 increased allospecific effector T cells, enhanced Th1 and Th17 polarization, and resulted in a decreased frequency of overall number of allospecific Tregs. The latter is due to inhibition in induction of adaptive Tregs rather than prevention of expansion of allospecific natural Tregs. In vitro, targeting TIM-3 did not inhibit nTreg-mediated suppression of Th1 alloreactive cells but increased IL-17 production by effector T cells. In summary, TIM-3 is a key regulatory molecule of alloimmunity through its ability to broadly modulate CD4(+) T cell differentiation, thus recalibrating the effector and regulatory arms of the alloimmune response.  相似文献   

4.
Dendritic cells (DC) are important regulators of T cell immunity. The degree of stimulation, the pattern of costimulatory molecules expressed, and the cytokines secreted by DC dictate the nature of the effector and memory cells generated, particularly with respect to their Th1 or Th2 phenotypes. In this study, we demonstrate that the addition of activated DC to spleen cultures containing established Th2-polarized CD4(+) T cells was sufficient to suppress Th2 and induce Th1 cytokines in a recall response, a phenomenon referred to as phenotype reversal. The ability of activated DC to induce phenotype reversal displayed exquisite Ag specificity. The DC activator B7-DC cross-linking Ab (XAb) was >10,000-fold more efficient at inducing phenotype reversal than the TLR agonists CpG-oligodeoxynucleotide and Gardiquimod. Characterization of the mechanisms governing phenotype reversal revealed the requirement for cognate interaction between the TCR:peptide-MHC complex, the expression of the costimulation/adhesion molecule ICAM-1, and secretion of IL-12 and IFN-gamma by the activated DC. The requirement for the costimulation/adhesion molecule SLAM (signaling lymphocytic activation molecule) was found to be quantitative. Thus, activation of DC, particularly by crosslinking B7-DC, can modulate well-established Th2 T cell responses in an Ag-specific manner. Because the regulation of mouse and human DC by B7-DC XAb overlaps in several significant ways, immune modulation with B7-DC XAb is a potential strategy for treating Th2-mediated diseases.  相似文献   

5.
Regulation of T cell dependent immune responses by TIM family members   总被引:12,自引:0,他引:12  
The T cell immunoglobulin mucin (TIM) proteins are type I membrane glycoproteins expressed on T cells and containing common structural motifs. While our understanding on the distribution and functions of TIM family members is still incomplete, data from several recent reports indicate that these proteins, together with T cell receptor and costimulatory signals, regulate the expansion and effector functions of T helper cells. In the current review, we provide evidences indicating that TIM-3 is capable of modulating the function of CD4(+)CD25(+) regulatory T cells and inhibiting aggressive Th1 mediated auto- and allo-immune responses. Similarly, additional data suggest that TIM-2 molecules function by negatively regulating Th2 immune responses. In contrast, TIM-1 appears to be an activation molecule for all T cells, although the mechanisms through which TIM-1 activates T cells remain to be elicited.  相似文献   

6.
Na?ve CD4+ T cells differentiate into effector T helper 1 (Th1) or Th2 cells, which are classified by their specific set of cytokines. Here we demonstrate that loss of JunB in in vitro polarized Th2 cells led to a dysregulated expression of the Th2-specific cytokines IL-4 and IL-5. These cells produce IFN-gamma and express T-bet, the key regulator of Th1 cells. In line with the essential role of Th2 cells in the pathogenesis of allergic asthma, mice with JunB-deficient CD4+ T cells exhibited an impaired allergen-induced airway inflammation. This study demonstrates novel functions of JunB in the development of Th2 effector cells, for a normal Th2 cytokine expression pattern and for a complete Th2-dependent immune response in mice.  相似文献   

7.
T cell Ig- and mucin-domain-containing molecules (TIMs) comprise a recently described family of molecules expressed on T cells. TIM-3 has been shown to be expressed on murine Th1 cell clones and has been implicated in the pathogenesis of Th1-driven experimental autoimmune encephalomyelitis. In contrast, association of TIM-1 polymorphisms to Th2-related airway hyperreactivity has been suggested in mice. The TIM molecules have not been investigated in human Th1- or Th2-mediated diseases. Using real-time (TaqMan) RT-PCR, we show that human Th1 lines expressed higher TIM-3 mRNA levels, while Th2 lines demonstrated a higher expression of TIM-1. Analysis of cerebrospinal fluid mononuclear cells obtained from patients with multiple sclerosis revealed significantly higher mRNA expression of TIM-1 compared with controls. Moreover, higher TIM-1 expression was associated with clinical remissions and low expression of IFN-gamma mRNA in cerebrospinal fluid mononuclear cells. In contrast, expression of TIM-3 correlated well with high expression of IFN-gamma and TNF-alpha. These data imply the differential expression of human TIM molecules by Th1 and Th2 cells and may suggest their differential involvement in different phases of a human autoimmune disease.  相似文献   

8.
9.
10.
Age-related changes in lymphocytes are most prominent in the T cell compartment. There have been substantial numbers of reports on T cell function in aged mice and humans, such as on the production of Th1 and Th2 cytokines, but the results show considerable variation and contradictions. In the present study, we used 8- to 12-mo-old aging mice and a well-established in vitro Th1/Th2 cell differentiation culture system to identify molecular defects in Th1/Th2 cell differentiation that can be detected in the relatively early stages of aging. The capability to differentiate into Th2 cells is reduced in aging mouse CD4(+) T cells. Decreased activation of the ERK MAPK cascade upon TCR stimulation, but normal intracellular-free calcium ion concentration mobilization and normal IL-4-induced STAT6 activation were observed in aging mouse CD4(+) T cells. In addition, reduced expression of GATA3 was detected in developing Th2 cells. Chromatin remodeling of the Th2 cytokine gene locus was found to be impaired. Th2-dependent allergic airway inflammation was milder in aging mice compared with in young adult mice. These results suggest that the levels of Th2 cell differentiation and resulting Th2-dependent immune responses, including allergic airway inflammation, decline during aging through defects in the activation of the ERK MAPK cascade, expression of GATA3 protein and GATA3-dependent chromatin remodeling of the Th2 cytokine gene locus. In the present study, we provide the first evidence indicating that a chromatin-remodeling event in T cells is impaired by aging.  相似文献   

11.
12.
CD4(+) memory/effector T cells play a central role in orchestrating the rapid and robust immune responses upon re-encounter with specific Ags. However, the immunologic mechanism(s) underlying these responses are still not fully understood. To investigate this, we generated an allergen (major house dust mite allergen, Blo t 5)-specific murine Th2 cell line that secreted IL-4, IL-5, IL-10, and IL-13, but not IL-9 or TNF-α, upon activation by the cognate Ag. These cells also exhibited CD44(high)CD62L(-) and CD127(+) (IL-7Rα(+)) phenotypes, which are characteristics of memory/effector T cells. Experiments involving adoptive transfer of this Th2 cell line in mice, followed by three intranasal challenges with Blo t 5, induced a dexamethasone-sensitive eosinophilic airway inflammation. This was accompanied by elevation of Th2 cytokines and CC- and CXC-motif chemokines, as well as recruitment of lymphocytes and polymorphic mononuclear cells into the lungs. Moreover, Blo t 5-specific IgE was detected 4 d after the last intranasal challenge, whereas elevation of Blo t 5-specific IgG1 was found at week two. Finally, pulmonary delivery of the pVAX-IL-35 DNA construct effectively downregulated Blo t 5-specific allergic airway inflammation, and i.m. injection of pVAX-IL-35 led to long-lasting suppression of circulating Blo t 5-specific and total IgE. This model provides a robust research tool to elucidate the immunopathogenic role of memory/effector Th2 cells in allergic airway inflammation. Our results suggested that IL-35 could be a potential therapeutic target for allergic asthma through its attenuating effects on allergen-specific CD4(+) memory/effector Th2 cell-mediated airway inflammation.  相似文献   

13.
14.
Innate effector cells that produce Th2-type cytokines are critical in Th2 cell-mediated immune responses. However, it is not known how these cells acquire the ability to produce Th2 cytokines. IL-4 is a potent inducer that directs differentiation of naive CD4(+) T cells into CD4(+) Th2 effector cells. To determine whether IL-4 can induce differentiation and expansion of Th2 cytokine-producing innate cells, we used mice whose il-4 gene was replaced by a knock-in green fluorescence protein (gfp) gene. We found that, directly ex vivo, IL-4 increased the number of GFP(+) cells in the airway and the lung tissue in an Ag-specific manner. The majority of GFP(+) cells were eosinophils, suggesting that IL-4 plays a pivotal role in expanding IL-4-producing eosinophils in vivo. IL-4-producing eosinophils showed some unique features compared with IL-4-producing CD4(+) T cells. They exhibited biallelic expression of the il-4 gene when stimulated and were more dominant IL-4- and IL-5-producing cells. Furthermore, we show that IL-4 drove bone marrow progenitor cells to differentiate into Th2 cytokine-producing eosinophils in vitro. These results strongly suggest IL-4 is a potent factor in directing bone marrow progenitor cells to differentiate into Th2 cytokine-producing eosinophils.  相似文献   

15.
Mouse and human CD4 T cells primed during an immune response may differentiate into effector phenotypes such as Th1 (secreting IFN-gamma) or Th2 (secreting IL-4) that mediate effective immunity against different classes of pathogen. However, primed CD4 T cells can also remain uncommitted, secreting IL-2 and chemokines, but not IFN-gamma or IL-4. We now show that human CD4 T cells primed by protein vaccines mostly secreted IL-2, but not IFN-gamma, whereas in the same individuals most CD4 T cells initially primed by infection with live pathogens secreted IFN-gamma. We further demonstrate that many tetanus-specific IL-2+IFN-gamma- cells are uncommitted and that a single IL-2+IFN-gamma- cell can differentiate into Th1 or Th2 phenotypes following in vitro stimulation under appropriate polarizing conditions. In contrast, influenza-specific IL-2+IFN-gamma- CD4 cells maintained a Th1-like phenotype even under Th2-polarizing conditions. Similarly, adoptively transferred OTII transgenic mouse T cells secreted mainly IL-2 after priming with OVA in alum, but were biased toward IFN-gamma secretion when primed with the same OVA peptide presented as a pathogen Ag during live infection. Thus, protein subunit vaccines may prime a unique subset of differentiated, but uncommitted CD4 T cells that lack some of the functional properties of committed effectors induced by infection. This has implications for the design of more effective vaccines against pathogens requiring strong CD4 effector T cell responses.  相似文献   

16.
Th2 responses are clearly involved in the pathogenesis of atopic disease. Thus, understanding the factors responsible for Th2 sensitization at sites of allergen exposure, such as airway and skin, is crucial for directing therapeutic or preventive strategies. Contrary to other models of Th2 sensitization to proteins, we have reported that Th2 responses induced by epicutaneous exposure to OVA are IL-4 independent. Combined deficiency of both IL-4 and IL-13 signaling did prevent Th2 generation, suggesting that IL-13 was mediating these IL-4-independent responses. It was not clear, however, whether IL-13 was simply replacing the need for IL-4 in genetically deficient mice or if IL-13 played a unique role. In the present study, we show that Th2 responses induced by epicutaneous OVA exposure (including lung inflammatory responses after inhaled Ag challenge, OVA-specific IgG1, and draining lymph node IL-5 production) are impaired in IL-13-deficient (IL-13(-/-)) mice compared with wild type. In contrast, i.p. sensitization of IL-13(-/-) mice resulted in responses equivalent to wild type. Generation of contact hypersensitivity to dinitrofluorobenzene, which involves Th1 and CD8(+) effector cells, was also intact in IL-13(-/-) mice. Taken together, the data indicate that IL-13 is the major inducer of Th2 generation in the cutaneous microenvironment, being required independently of IL-4. This fact, in combination with the known abundance of IL-13 in atopic dermatitis skin lesions, emphasizes the potentially important role of the skin as a site for Th2 sensitization to environmental allergens, particularly in atopic individuals.  相似文献   

17.
We previously demonstrated inhibition of ovalbumin-induced allergic airway hyper-responsiveness in the mouse using ES-62, a phosphorylcholine-containing glycoprotein secreted by the filarial nematode, Acanthocheilonema viteae. This inhibition correlated with ES-62-induced mast cell desensitisation, although the degree to which this reflected direct targeting of mast cells remained unclear as suppression of the Th2 phenotype of the inflammatory response, as measured by eosinophilia and IL-4 levels in the lungs, was also observed. We now show that inhibition of the lung Th2 phenotype is reflected in ex vivo analyses of draining lymph node recall cultures and accompanied by a decrease in the serum levels of total and ovalbumin-specific IgE. Moreover, ES-62 also suppresses the lung infiltration by neutrophils that is associated with severe asthma and is generally refractory to conventional anti-inflammatory therapies, including steroids. Protection against Th2-associated airway inflammation does not reflect induction of regulatory T cell responses (there is no increased IL-10 or Foxp3 expression) but rather a switch in polarisation towards increased Tbet expression and IFNγ production. This ES-62-driven switch in the Th1/Th2 balance is accompanied by decreased IL-17 responses, a finding in line with reports that IFNγ and IL-17 are counter-regulatory. Consistent with ES-62 mediating its effects via IFNγ-mediated suppression of pathogenic Th2/Th17 responses, we found that neutralising anti-IFNγ antibodies blocked protection against airway inflammation in terms of pro-inflammatory cell infiltration, particularly by neutrophils, and lung pathology. Collectively, these studies indicate that ES-62, or more likely small molecule analogues, could have therapeutic potential in asthma, in particular for those subtypes of patients (e.g. smokers, steroid-resistant) who are refractory to current treatments.  相似文献   

18.
Formyl peptide receptors (FPRs) are chemoattractant receptors that mediate inflammatory cell responses to infection. Recent evidence indicates that noneosinophilic asthma phenotypes can be developed by both Th1 and Th17 cell responses when exposed to LPS-containing allergens. In this study, we evaluated the effects of airway activation of FPRs by their synthetic agonist, Trp-Lys-Tyr-Met-Val-D-Met (W-peptide), on the development of Th1 and Th17 cell responses in a noneosinophilic asthma mouse model. A noneosinophilic asthma mouse model was generated by intranasal sensitization with 10 μg of LPS plus 75 μg of OVA on days 0, 1, 2, and 7. Mice were then challenged with 50 μg of OVA alone on days 14, 15, 21, and 22. W-peptide was administered during the sensitization period, and immune and inflammatory responses were evaluated after OVA challenge. Lung inflammation after OVA challenge was partly abolished by airway activation of FPRs during sensitization. Maturation of dendritic cells (DCs) and migration of DCs from the lung to lung-draining lymph nodes were inhibited by FPR activation. In addition, airway activation of FPRs inhibited allergen-specific T cell proliferation in the lymph nodes. Production of IL-12 and IL-6 (Th1- and Th17-polarizing cytokines) from lung DCs was decreased by airway activation of FPRs. This effect resulted in the inhibition of allergen-specific Th1 and Th17 cell responses. Airway activation of FPRs during sensitization effectively prevents the development of Th1 and Th17 cell responses induced by LPS-containing allergens via multiple mechanisms, such as inhibition of DC maturation and migration and the production of Th1- and Th7-polarizing cytokines.  相似文献   

19.
Asthma is an inflammatory lung disease that is initiated and directed by Th2 and inhibited by Th1 cytokines. Microbial infections have been shown to prevent allergic responses by inducing the secretion of the Th1 cytokines IL-12 and IFN-gamma. In this study, we examined whether administration of lipoprotein I (OprI) from Pseudomonas aeruginosa could prevent the inflammatory and physiological manifestations of asthma in a murine model of OVA-induced allergic asthma. OprI triggered dendritic cells to make IL-12 and TNF-alpha, with subsequent IFN-gamma production from T cells. OprI stimulation of dendritic cells involved both TLR2 and TLR4. Intranasal coadministration of OprI with OVA allergen resulted in a significant decrease in airway eosinophilia and Th2 (IL-4 and IL-13) cytokines and this effect was sustained after repeated allergen challenge. The immediate suppressive effect of OprI (within 2 days of administration) was accompanied by an increase in Th1 cytokine IFN-gamma production and a significant, but transient infiltration of neutrophils. OprI did not redirect the immune system toward a Th1 response since no increased activation of locally recruited Th1 cells could be observed upon repeated challenge with allergen. Our data show for the first time that a bacterial lipoprotein can modulate allergen-specific Th2 effector cells in an allergic response in vivo for a prolonged period via stimulation of the TLR2/4 signaling pathway.  相似文献   

20.
A novel costimulatory molecule expressed on activated T cells, inducible costimulator (ICOS), and its ligand, B7-related protein-1 (B7RP-1), were recently identified. ICOS costimulation leads to the induction of Th2 cytokines without augmentation of IL-2 production, suggesting a role for ICOS in Th2 cell differentiation and expansion. In the present study, a soluble form of murine ICOS, ICOS-Ig, was used to block ICOS/B7RP-1 interactions in a Th2 model of allergic airway disease. In this model, mice are sensitized with inactivated Schistosoma mansoni eggs and are subsequently challenged with soluble S. mansoni egg Ag directly in the airways. Treatment of C57BL/6 mice with ICOS-Ig during sensitization and challenge attenuated airway inflammation, as demonstrated by a decrease in cellular infiltration into the lung tissue and airways, as well as by a decrease in local IL-5 production. These inhibitory effects were not due to a lack of T cell priming nor to a defect in Th2 differentiation. In addition, blockade of ICOS/B7RP-1 interactions during ex vivo restimulation of lung Th2 effector cells prevented cytokine production. Thus, blockade of ICOS signaling can significantly reduce airway inflammation without affecting Th2 differentiation in this model of allergic airway disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号