首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To characterize the sequence features surrounding the translationinitiation sites on the genome of Synechocystis sp. strain 6803,the total proteins extracted from the cell were resolved bytwo-dimensional electrophoresis, and the amino-terminal sequencesof the relatively abundant protein spots were determined. Bycomparison of the determined amino-terminal sequences with thenucleotide sequence of the entire genome, the translation initiationsites of a total of 72 proteins were successfully assigned onthe genome. The sequence features emerged from the nucleotidesequences at and surrounding the translation initiation siteswere as follows: (1) In addition to the three initiation codons,ATG, GTG, and TTG, evidence was obtained that ATT was also usedas a rare initiation codon; (2) the core sequences (GAGG, GGAGand AGGA) of the Shine-Dalgarno sequence were identified inthe appropriate position preceding the 35 initiation sites (48.6%);and (3) the preferential sequence surrounding the initiationcodons was formulated as 5'-YY[· · ·]R-3'where Y and R denote pyrimidine and purine nucleotides, respectively,and three dots represent the initiation codons. The result obtainedwould provide valuable information for improvement of the gene-findingsoftware, and the approach used in this study should be applicablefor comprehensive analysis of the expression profiles of cellularproteins.  相似文献   

2.
A protein-gene linkage map of the cyanobacterium Anabaena sp. strain PCC7120 was successfully constructed for 123 relatively abundant proteins. The total proteins extracted from the cell were resolved by two-dimensional electrophoresis, and the amino-terminal sequences of the protein spots were determined. By comparing the determined amino-terminal sequences with the entire genome sequence, the putative translation initiation sites of 87 genes were successfully assigned on the genome. The elucidated sequence features surrounding the translation initiation sites were as follows: (1) GTG and TTG in addition to the ATG were used as rare initiation codons; (2) the core sequences (GAGG, GGAG and AGGA) of the Shine-Dalgarno sequence were identified in the appropriate position preceding the 51 initiation sites (58.6%); (3) the nucleotides at the two regions, from -35 to -33, and from -19 to -17 (relative to the first nucleotide in the initiation codon) were preferentially adenines or thymines; (4) the nucleotides at the region from -14 to -8 were preferentially purines; (5) the nucleotide at position -1 was biased towards non-guanine (96.6%); (6) the nucleotide at the position +5 was preferentially cytosine (63.2%). It was evident that removal of the translation initiator methionine was dependent on the side-chain bulkiness of the penultimate amino acid residue. The predicted putative signal peptide sequences were also indicated. Besides confirming the existence of many predicted proteins, the data will serve as a starting point for the study of signals important in post-translational processing and nucleotide sequences important in the initiation of translation.  相似文献   

3.
Ingolia NT  Lareau LF  Weissman JS 《Cell》2011,147(4):789-802
The ability to sequence genomes has far outstripped approaches for deciphering the information they encode. Here we present a suite of techniques, based on ribosome profiling (the deep sequencing of ribosome-protected mRNA fragments), to provide genome-wide maps of protein synthesis as well as a pulse-chase strategy for determining rates of translation elongation. We exploit the propensity of harringtonine to cause ribosomes to accumulate at sites of translation initiation together with a machine learning algorithm to define protein products systematically. Analysis of translation in mouse embryonic stem cells reveals thousands of strong pause sites and unannotated translation products. These include amino-terminal extensions and truncations and upstream open reading frames with regulatory potential, initiated at both AUG and non-AUG codons, whose translation changes after differentiation. We also define a class of short, polycistronic ribosome-associated coding RNAs (sprcRNAs) that encode small proteins. Our studies reveal an unanticipated complexity to mammalian proteomes.  相似文献   

4.
5.

Background  

The nucleotide sequence flanking the translation initiation codon (start codon context) affects the translational efficiency of eukaryotic mRNAs, and may indicate the presence of an alternative translation initiation site (TIS) to produce proteins with different properties. Multi-targeting may reflect the translational variability of these other protein forms. In this paper we present a web server that performs computations to investigate the usage of alternative translation initiation sites for the synthesis of new protein variants that might have different functions.  相似文献   

6.
L H Soe  C K Shieh  S C Baker  M F Chang    M M Lai 《Journal of virology》1987,61(12):3968-3976
A 28-kilodalton protein has been suggested to be the amino-terminal protein cleavage product of the putative coronavirus RNA polymerase (gene A) (M.R. Denison and S. Perlman, Virology 157:565-568, 1987). To elucidate the structure and mechanism of synthesis of this protein, the nucleotide sequence of the 5' 2.0 kilobases of the coronavirus mouse hepatitis virus strain JHM genome was determined. This sequence contains a single, long open reading frame and predicts a highly basic amino-terminal region. Cell-free translation of RNAs transcribed in vitro from DNAs containing gene A sequences in pT7 vectors yielded proteins initiated from the 5'-most optimal initiation codon at position 215 from the 5' end of the genome. The sequence preceding this initiation codon predicts the presence of a stable hairpin loop structure. The presence of an RNA secondary structure at the 5' end of the RNA genome is supported by the observation that gene A sequences were more efficiently translated in vitro when upstream noncoding sequences were removed. By comparing the translation products of virion genomic RNA and in vitro transcribed RNAs, we established that our clones encompassing the 5'-end mouse hepatitis virus genomic RNA encode the 28-kilodalton N-terminal cleavage product of the gene A protein. Possible cleavage sites for this protein are proposed.  相似文献   

7.
The nucleotide sequence of the CelB gene, encoding the extracellular endoglucanase B of Clostridium thermocellum, is reported. The putative start of the 1689 bp coding sequence was assigned to an ATG codon which is preceded by an AGGAGG sequence typical of ribosomal binding sites in Gram-positive bacteria. The amino-terminal end of the deduced protein sequence is similar to signal peptides described for other bacterial secretory proteins. The carboxy-terminal ends of endoglucanases A and B appear to be remarkably homologous. A striking feature of the conserved region is that both proteins contain two reiterated stretches of 23 aminoacids each, separated by 9 residues.  相似文献   

8.
Penicillin-binding proteins 1A and 1B of Escherichia coli are the major peptidoglycan transglycosylase-transpeptidases that catalyse the polymerisation and insertion of peptidoglycan precursors into the bacterial cell wall during cell elongation. The nucleotide sequence of a 2764-base-pair fragment of DNA that contained the ponA gene, encoding penicillin-binding protein 1A, was determined. The sequence predicted that penicillin-binding protein 1A had a relative molecular mass of 93 500 (850 amino acids). The amino-terminus of the protein had the features of a signal peptide but it is not known if this peptide is removed during insertion of the protein into the cytoplasmic membrane. The nucleotide sequence of a 2758-base-pair fragment of DNA that contained the ponB gene, encoding penicillin-binding protein 1B, was also determined. Penicillin-binding protein 1B consists of two major components which were shown to result from the use of alternative sites for the initiation of translation. The large and small forms of penicillin-binding protein 1B were predicted to have relative molecular masses of 94 100 and 88 800 (844 and 799 amino acids). The amino acid sequences of penicillin-binding proteins 1A and 1B could be aligned if two large gaps were introduced into the latter sequence and the two proteins then showed about 30% identity. The amino acid sequences of the proteins showed no extensive similarity to the sequences of penicillin-binding proteins 3 or 5, or to the class A or class C beta-lactamases. Two short regions of amino acid similarity were, however, found between penicillin-binding proteins 1A and 1B and the other penicillin-binding proteins and beta-lactamases. One of these included the predicted active-site serine residue which was located towards the middle of the sequences of penicillin-binding proteins 1A, 1B and 3, within the conserved sequence Gly-Ser-Xaa-Xaa-Lys-Pro. The other region was 19-40 residues to the amino-terminal side of the active-site serine and may be part of a conserved penicillin-binding site in these proteins.  相似文献   

9.
The L11 operon in Escherichia coli consists of the genes coding for ribosomal proteins L11 and L1. It is known that translation of L1 does not take place unless the preceding L11 cistron is translated, that is, the two cistrons are translationally coupled, and this is the basis of coregulation of the translation of the two cistrons by a single repressor, L1. Several mutational analyses were carried out to define the region responsible for coupling L1 translation with L11 translation. First, by introducing several amber mutations into the L11 gene by a site-directed mutagenesis technique, it was shown that translation by ribosomes down to a position 21 nucleotides upstream, but not to a position 45 nucleotides upstream, from the end of the L11 cistron allowed the initiation of L11 translation. Second, deletion analysis indicated that a region located 23 to 20 nucleotides from the end of the L11 gene was involved in preventing independent initiation from L1 translation. Third, five different mutations obtained by screening for activation of the masked L1 initiation site were found to be clustered in a small region immediately upstream from the Shine-Dalgarno sequence of L1, and all of them were G-to-A transitions. These results, together with some additional experiments with oligonucleotide-directed mutagenesis, defined the region involved in the coupling and suggest that some special feature of this region, probably different from simple masking of the initiation site by base pairing, is responsible for translational coupling. The present results also suggest that there might be specific differences in the primary nucleotide sequence that distinguish independent translational initiation sites from translationally coupled (i.e., masked) initiation sites.  相似文献   

10.
R Kageyama  H Ohkubo  S Nakanishi 《Biochemistry》1984,23(16):3603-3609
Cloned cDNA sequences for human preangiotensinogen have been isolated from a human liver cDNA library by hybridization with a restriction fragment derived from a previously cloned cDNA for rat preangiotensinogen. Analyses by nucleotide sequence determination, S1 nuclease mapping, and RNA blot hybridization indicate that human preangiotensinogen is encoded by two mRNAs that differ only in the length of the 3'-untranslated region. The deduced amino acid sequence shows that the mature angiotensinogen consists of 452 amino acid residues with the angiotensin sequence at its amino-terminal portion. Two potential initiation sites have been discussed. These are the methionine codon located at the position exactly corresponding to the initiation site of rat preangiotensinogen mRNA and an additional methionine codon positioned nearest the 5' end of the mRNA. The amino acid sequences starting at either of the initiation sites and preceding the angiotensin sequence constitute a large number of hydrophobic amino acid residues, thus representing the signal peptide characteristic of the secretory proteins. Human and rat preangiotensinogens show that 63.6% of the amino acid positions of the two proteins are identical. However, the amino-terminal portions directly distal to angiotensin I diverge markedly between the two proteins and differ in their possible glycosylation sites. These structural differences may contribute to the known species specificity exhibited by renin.  相似文献   

11.
Several GTPases participate in bacterial protein biosynthesis. Initiation factor 2 controls the formation of the ribosomal initiation complex and places initiator fMet-tRNAfMet in the ribosomal P-site. Elongation factors Tu and G are responsible for codon-specific binding of the aminoacyl-tRNA to the A-site, and peptidyl-tRNA to the P-site, respectively, during the elongation phase of protein biosynthesis. Release factor 3, a GTPase which is not ubiquitous, is involved in termination and release of the nascent polypeptide. Other translation factors, including initiation factors 1 and 3, elongation factor Ts, release factors 1 and 2, and ribosomal release factor do not belong to the family of GTP/GDP binding proteins. The guanosine nucleotide binding domains of the GTPases involved in translation are structurally related to the Galpha subunit of heterotrimeric G proteins and to the proteins of the Ras family. We have identified and sequenced all genes coding for translation factors in the extreme thermophile Thermus thermophilus. The proteins were overproduced in Escherichia coli, purified, biochemically characterised and used for crystallisation and structural analysis. Further biochemical investigations were aimed at gaining insight into the molecular mechanism underlying the regulation of the GTPase activity of the translation factors, and to elucidate the role of their ribosomal binding sites in this process.  相似文献   

12.
13.
Initiation of translation in prokaryotes and eukaryotes.   总被引:74,自引:0,他引:74  
M Kozak 《Gene》1999,234(2):187-208
  相似文献   

14.
Cell-free translation of the RNA of encephalomyocarditis virus was examined after hybridization of chemically synthesized cDNA fragments to different sites of the 5' noncoding region of the viral RNA. The following results were obtained. The binding of cDNA fragments to the first 41 nucleotides, to the poly(C) tract (between nucleotides 149 and 263), and to the sequence between nucleotides 309 and 338 did not affect translation of the viral RNA; the binding of cDNA fragments to the sequence between nucleotides 420 and 449 caused a slight inhibition; and the binding of fragments to eight different sites between nucleotides 450 and the initiator AUG codon (nucleotide 834) caused high degrees of inhibition. The results suggest that the first part of the 5' untranslated region, at least to nucleotide 338, may not be required for encephalomyocarditis viral RNA translation; however, the region near nucleotide 450 is important for translation of the viral RNA. The possibility that initiation occurs at an internal site is discussed.  相似文献   

15.
16.
17.
Here, we report the use of an in vivo protein-protein interaction detection approach together with focused follow-up experiments to study the function of the DeaD protein in Escherichia coli. In this method, functions are assigned to proteins based on the interactions they make with others in the living cell. The assigned functions are further confirmed using follow-up experiments. The DeaD protein has been characterized in vitro as a putative prokaryotic factor required for the formation of translation initiation complexes on structured mRNAs. Although the RNA helicase activity of DeaD has been demonstrated in vitro, its in vivo activity remains controversial. Here, using a method called sequential peptide affinity (SPA) tagging, we show that DeaD interacts with certain ribosomal proteins as well as a series of other nucleic acid binding proteins. Focused follow-up experiments provide evidence for the mRNA helicase activity of the DeaD protein complex during translation initiation. DeaD overexpression compensates for the reduction of the translation activity caused by a structure placed at the initiation region of a chloramphenicol acetyltransferase gene (cat) used as a reporter. Deletion of the deaD gene, encoding DeaD, abolishes the translation activity of the mRNA with an inhibitory structure at its initiation region. Increasing the growth temperature disrupts RNA secondary structures and bypasses the DeaD requirement. These observations suggest that DeaD is involved in destabilizing mRNA structures during translation initiation. This study also provides further confirmation that large-scale protein-protein interaction data can be suitable to study protein functions in E. coli.  相似文献   

18.
19.
Relative individual information is a measurement that scores the quality of DNA- and RNA-binding sites for biological machines. The development of analytical approaches to increase the power of this scoring method will improve its utility in evaluating the functions of motifs. In this study, the scoring method was applied to potential translation initiation sites in Drosophila to compute Translation Relative Individual Information (TRII) scores. The weight matrix at the core of the scoring method was optimized based on high-confidence translation initiation sites identified by using a progressive partitioning approach. Comparing the distributions of TRII scores for sites of interest with those for high-confidence translation initiation sites and random sequences provides a new methodology for assessing the quality of translation initiation sites. The optimized weight matrices can also be used to describe the consensus at translation initiation sites, providing a quantitative measure of preferred and avoided nucleotides at each position.  相似文献   

20.
Respiratory-defective mutants of Saccharomyces cerevisiae assigned to pet complementation group G19 lack cytochrome oxidase activity and cytochromes a and a3. The enzyme deficiency is caused by recessive mutations in the nuclear gene COX10. Analyses of cytochrome oxidase subunits suggest that the product of COX10 provides an essential function at a posttranslational stage of enzyme assembly. The wild type COX10 gene has been cloned by transformation of a mutant from complementation group G19 with a yeast genomic library. Based on the nucleotide sequence of COX10, the primary translation product has an Mr of 52,000. The amino-terminal 190 residues constitute a hydrophilic domain while the carboxyl-terminal region is hydrophobic and has nine potential membrane-spanning segments. The sequence of the carboxyl-terminal hydrophobic region is homologous to an unidentified protein encoded by a reading frame (ORF1) located in one of the cytochrome oxidase operons of Paracoccus denitrificans. The two proteins share 24% identical residues and exhibit very similar hydrophobicity profiles. The bacterial homolog, however, lacks the hydrophilic amino-terminal region of the yeast protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号