首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High-affinity iron uptake in gram-negative bacteria depends upon TonB, a protein which couples the proton motive force in the cytoplasmic membrane to iron chelate receptors in the outer membrane. To advance studies on TonB structure and function, we expressed a recombinant form of Escherichia coli TonB lacking the N-terminal cytoplasmic membrane anchor. This protein (H(6)-'TonB; M(r), 24,880) was isolated in a soluble fraction of lysed cells and was purified by virtue of a hexahistidine tag located at its N terminus. Sedimentation experiments indicated that the H(6)-'TonB preparation was almost monodisperse and the protein was essentially monomeric. The value found for the Stokes radius (3.8 nm) is in good agreement with the value calculated by size exclusion chromatography. The frictional ratio (2.0) suggested that H(6)-'TonB adopts a highly asymmetrical form with an axial ratio of 15. H(6)-'TonB captured both the ferrichrome-iron receptor FhuA and the ferric enterobactin receptor FepA from detergent-solubilized outer membranes in vitro. Capture was enhanced by preincubation of the receptors with their cognate ligands. Cross-linking assays with the purified proteins in vitro demonstrated that there was preferential interaction between TonB and ligand-loaded FhuA. Purified H(6)-'TonB was found to be stable and thus shows promise for high-resolution structural studies.  相似文献   

2.
The TonB-dependent energy transduction system couples cytoplasmic membrane proton motive force to active transport of iron-siderophore complexes across the outer membrane in Gram-negative bacteria. In Escherichia coli, the primary players known in this process to date are: FepA, the TonB-gated transporter for the siderophore enterochelin; TonB, the energy-transducing protein; and two cytoplasmic membrane proteins with less defined roles, ExbB and ExbD. In this study, we report the per cell numbers of TonB, ExbB, ExbD and FepA for cells grown under iron-replete and iron-limited conditions. Under iron-replete conditions, TonB and FepA were present at 335 +/- 78 and 504 +/- 165 copies per cell respectively. ExbB and ExbD, despite being encoded from the same operon, were not equimolar, being present at 2463 +/- 522 and 741 +/- 105 copies respectively. The ratio of these proteins was calculated at one TonB:two ExbD:seven ExbB under all four growth conditions tested. In contrast, the TonB:FepA ratio varied with iron status and according to the method used for iron limitation. Differences in the method of iron limitation also resulted in significant differences in cell size, skewing the per cell copy numbers for all proteins.  相似文献   

3.
One of the components of the RecA-LexA-controlled SOS response in Escherichia coli cells is an inducible error-prone DNA replication pathway that results in a substantial increase in the mutation rate. It is believed that error-prone DNA synthesis is performed by a multiprotein complex that is formed by UmuC, UmuD', RecA, and probably DNA polymerase III holoenzyme. It is postulated that the formation of such a complex requires specific interactions between these proteins. We have analyzed the specific protein-protein interactions between UmuC, UmuD, and UmuD' fusion proteins, using a Saccharomyces cerevisiae two-hybrid system. In agreement with previous in vitro data, we have shown that UmuD and UmuD' are able to form both homodimers (UmuD-UmuD and UmuD'-UmuD') and a heterodimer (UmuD-UmuD'). Our data show that UmuC fusion protein is capable of interacting exclusively with UmuD' and not with UmuD. Thus, posttranslational processing of UmuD into UmuD' is a critical step in SOS mutagenesis, enabling only the latter protein to interact with UmuC. Our data seem to indicate that the integrity of the entire UmuC sequence is essential for UmuC-UmuD' heterotypic interaction. Finally, in our studies, we used three different UmuC mutant proteins: UmuC25, UmuC36, and UmuC104. We have found that UmuC25 and UmuC36 are not capable of associating with UmuD'. In contrast, UmuC104 protein interacts with UmuD' protein with an efficiency identical to that of the wild-type protein. We postulate that UmuC104 protein might be defective in interaction with another, unknown protein essential for the SOS mutagenesis pathway.  相似文献   

4.
We have determined the nucleotide sequence of the Escherichia coli fepA gene, which codes for the outer membrane receptor for ferrienterochelin and colicins B and D. The predicted FepA polypeptide has a molecular weight of 79,908 and consists of 723 amino acids. A 22-amino acid leader or signal peptide preceded the mature protein. With respect to overall composition, hydropathy, net charge and distribution of nonpolar segments, the FepA polypeptide was typical of other E. coli outer membrane proteins, except that FepA contained 2 cysteine residues. Comparison of the deduced amino acid sequence of FepA with that of three other TonB-dependent receptors (BtuB, FhuA, and IutA) revealed only a few regions of sequence homology; one of these included the amino-termini. An amino acid substitution within the conserved amino-terminal region of BtuB resulted in production of a receptor that had normal binding functions but was incapable of energy-dependent transport of vitamin B12. This result suggests that the amino-terminal end of these four polypeptides is involved in interaction with the TonB protein or another step of energy transduction. Three other regions of homology were shared among the four proteins: one near residues 50 to 70, another at about residue 100 to 140, and the last between 20 and 40 amino acid residues from the carboxyl terminus. The function of these three regions remains speculative.  相似文献   

5.
The Escherichia coli TonB protein serves to couple the cytoplasmic membrane proton motive force to active transport of iron-siderophore complexes and vitamin B(12) across the outer membrane. Consistent with this role, TonB has been demonstrated to participate in strong interactions with both the cytoplasmic and outer membranes. The cytoplasmic membrane determinants for that interaction have been previously characterized in some detail. Here we begin to examine the nature of TonB interactions with the outer membrane. Although the presence of the siderophore enterochelin (also known as enterobactin) greatly enhanced detectable cross-linking between TonB and the outer membrane receptor, FepA, the absence of enterochelin did not prevent the localization of TonB to the outer membrane. Furthermore, the absence of FepA or indeed of all the iron-responsive outer membrane receptors did not alter this association of TonB with the outer membrane. This suggested that TonB interactions with the outer membrane were not limited to the TonB-dependent outer membrane receptors. Hydrolysis of the murein layer with lysozyme did not alter the distribution of TonB, suggesting that peptidoglycan was not responsible for the outer membrane association of TonB. Conversely, the interaction of TonB with the outer membrane was disrupted by the addition of 4 M NaCl, suggesting that these interactions were proteinaceous. Subsequently, two additional contacts of TonB with the outer membrane proteins Lpp and, putatively, OmpA were identified by in vivo cross-linking. These contacts corresponded to the 43-kDa and part of the 77-kDa TonB-specific complexes described previously. Surprisingly, mutations in these proteins individually did not appear to affect TonB phenotypes. These results suggest that there may be multiple redundant sites where TonB can interact with the outer membrane prior to transducing energy to the outer membrane receptors.  相似文献   

6.
In Escherichia coli, the TonB system transduces the protonmotive force (pmf) of the cytoplasmic membrane to support a variety of transport events across the outer membrane. Cytoplasmic membrane proteins ExbB and ExbD appear to harvest pmf and transduce it to TonB. Experimental evidence suggests that TonB shuttles to the outer membrane, apparently to deliver conformationally stored potential energy to outer membrane transporters. In the most recent model, discharged TonB is then recycled to the cytoplasmic membrane to be re-energized by the energy coupling proteins, ExbB/D. It has been suggested that the carboxy-terminal 75 amino acids of active TonB could be represented by the rigid, strand-exchanged, dimeric crystal structure of the corresponding fragment. In contrast, recent genetic studies of alanine substitutions have suggested instead that in vivo the carboxy-terminus of intact TonB is dynamic and flexible. The biochemical studies presented here confirm and extend those results by demonstrating that individual cys substitution at aromatic residues in one monomeric subunit can form spontaneous dimers in vivo with the identical residue in the other monomeric subunit. Two energized TonBs appear to form a single cluster of 8-10 aromatic amino acids, including those found at opposite ends of the crystal structure. The aromatic cluster requires both the amino-terminal energy coupling domain of TonB, and ExbB/D (and cross-talk analogues TolQ/R) for in vivo formation. The large aromatic cluster is detected in cytoplasmic membrane-, but not outer membrane-associated TonB. Consistent with those observations, the aromatic cluster can form in the first half of the energy transduction cycle, before release of conformationally stored potential energy to ligand-loaded outer membrane transporters. The model that emerges is one in which, after input of pmf mediated through ExbB/D and the TonB transmembrane domain, the TonB carboxy-terminus can form a meta-stable high-energy conformation that is not represented by the crystal structure of the carboxy-terminus.  相似文献   

7.
Energy-coupled reactions of the Escherichia coli outer membrane transport proteins BtuB and Cir require the tonB product. Some point mutations in a region of btuB and cir that is highly conserved in TonB-dependent transport proteins led to loss of TonB-coupled uptake of vitamin B12 and colicin Ia, whereas binding was unaffected. Most other point mutations in this region had no detectable effect on transport activity. Mutations in tonB that suppressed the transport defect phenotype of these btuB mutations were isolated. All carried changes of glutamine 165 to leucine, lysine, or proline. The various tonB mutations differed markedly in their suppression activities on different btuB or cir mutations. This allele specificity of suppression indicates that TonB interacts directly with the outer membrane transport proteins in a manner that recognizes the local conformation but not specific side chains within this conserved region. An effect of the context of the remainder of the protein was seen, since the same substitution (valine 10----glycine) in btuB and cir responded differently to the suppressors. This finding supports the proposal that TonB interacts with more of the transport proteins than the first conserved domain alone.  相似文献   

8.
Gram-negative bacteria are able to convert potential energy inherent in the proton gradient of the cytoplasmic membrane into active nutrient transport across the outer membrane. The transduction of energy is mediated by TonB protein. Previous studies suggest a model in which TonB makes sequential and cyclic contact with proteins in each membrane, a process called shuttling. A key feature of shuttling is that the amino-terminal signal anchor must quit its association with the cytoplasmic membrane, and TonB becomes associated solely with the outer membrane. However, the initial studies did not exclude the possibility that TonB was artifactually pulled from the cytoplasmic membrane by the fractionation process. To resolve this ambiguity, we devised a method to test whether the extreme TonB amino-terminus, located in the cytoplasm, ever became accessible to the cys-specific, cytoplasmic membrane-impermeant molecule, Oregon Green(R) 488 maleimide (OGM) in vivo. A full-length TonB and a truncated TonB were modified to carry a sole cysteine at position 3. Both full-length TonB and truncated TonB (consisting of the amino-terminal two-thirds) achieved identical conformations in the cytoplasmic membrane, as determined by their abilities to cross-link to the cytoplasmic membrane protein ExbB and their abilities to respond conformationally to the presence or absence of proton motive force. Full-length TonB could be amino-terminally labelled in vivo, suggesting that it was periplasmically exposed. In contrast, truncated TonB, which did not associate with the outer membrane, was not specifically labelled in vivo. The truncated TonB also acted as a control for leakage of OGM across the cytoplasmic membrane. Further, the extent of labelling for full-length TonB correlated roughly with the proportion of TonB found at the outer membrane. These findings suggest that TonB does indeed disengage from the cytoplasmic membrane during energy transduction and shuttle to the outer membrane.  相似文献   

9.
A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.  相似文献   

10.
The TonB protein is required for several outer membrane transport processes in bacteria. A short 33-residue peptide segment of TonB has been studied by 1H and 13C nuclear magnetic resonance spectroscopy. The sequence of this peptide segment contains multiple Glu-Pro and Lys-Pro dipeptide repeats that maintain rigid, elongated structures and flank a short connecting segment that adopts a beta-strand configuration. This TonB peptide is shown to interact specifically with the FhuA protein, the outer membrane receptor for ferrichrome-iron, providing the first direct evidence that the TonB protein interacts with outer membrane receptors. Interaction with the FhuA protein involves the extended structural element containing positively charged Lys-Pro repeats, and suggests a functional role for this segment of the TonB protein. As TonB is anchored in the cytoplasmic membrane the protein must, uniquely, span the periplasm. These data, together with studies described in the accompanying paper, suggest a model by which TonB serves to transduce conformational information over extended distances, from the cytoplasmic membrane to the outer membrane.  相似文献   

11.
12.
In Escherichia coli, the outer membrane protein FepA is a receptor for the siderophore complex ferric enterobactin and for colicins B and D. To identify protein domains important for FepA activity, the effects of deletion and linker insertion mutations on receptor structure and function were examined. In-frame internal deletion mutations removing sequences encoding up to 304 amino acid residues resulted in functionally defective FepA polypeptides, although most were translocated efficiently to the outer membrane. One exception, a derivative lacking 87 internal amino acid residues near the N terminus, showed an inability to transport ferric enterobactin but retained limited colicin receptor function. Analysis of cells carrying 3'-terminal fepA deletion mutations suggested that residues within the C terminus of FepA may be involved in secretion and proper translocation of the protein to the outer membrane. Introduction of the peptide Leu-Glu after FepA residues 55, 142, or 324 severely impaired receptor function for all three ligands, while the same insertion after residues 339 or 359 had virtually no detrimental effect on FepA function. Foreign peptides inserted after residues 204 or 635 restricted colicin B and D function only, leaving ferric enterobactin transport ability at near wild-type levels. The results presented in this study have identified key regions of FepA potentially involved in receptor function and demonstrate the presence of both shared and unique ligand-responsive domains.  相似文献   

13.
Isolation of ribosomal precursors from Escherichia coli K12 is described. The RNA and protein content of the precursor particles was determined.One physiologically stable precursor was found for the 30 S subunit. The assembly scheme is as follows: p16 S RNA + 9 proteins → p30 S (“21 S” precursor) p30 S + 12 proteins → 30 S subunit where p is precursor.Each of the two precursors for the 50 S subunit, P150 S and p250 S (“32 S” and “43 S” precursors, respectively), contains p5 S + p23 S RNA's in a 1:1 molar ratio. The assembly scheme is as follows: p23 S RNA + p5 S RNA + 16 or 17 proteins → p150 S
In contrast to the p250 S precursor the p150 S precursor is not similar to any core particles, which were obtained by treating 50 S subunits with different concentrations of LiCl or CsCl.The precursors p30 S and p250 S can be converted into active 30 S and 50 S sub-units, respectively, by incubation at 42 °C in the presence of ribosomal proteins and under RNA methylating conditions.  相似文献   

14.
Recent reports demonstrated that the energy-dependent step of vitamin B12 uptake into cells of Escherichia coli rapidly declines after cessation either of the expression of the tonB gene or of general protein synthesis. It is shown here that inhibition of protein synthesis results in the decline, with similar kinetics, of all tonB-dependent processes, including sensitivity to colicins B and Ia, irreversible adsorption of phage phi80, and siderophore-mediated iron uptake. The role of ongoing TonB-dependent reactions on this lability of TonB function was investigated. Ferrichrome and the enterochelin precursor, 2,3-dihydroxybenzoate, caused both a moderate depression of B12 uptake activity in growing cells (reversed upon removal of the siderophore) and an acceleration of the loss of activity following inhibition of protein synthesis by addition of spectinomycin. Strains lacking the tonB-dependent siderophore uptake systems did not show these responses. The results suggest the consumption of tonB product during its action.  相似文献   

15.
A deoxyribonucleoprotein (DNP) complex has been isolated from Escherichia coli cells by chromatography on Sephadex G-200. The DNP complex contains phosphoproteins and the content of phosphorus bound to the DNP protein is 3 times higher than in cytoplasmic proteins not bound to DNA. These results have been confirmed by in vivo (32-P-KH2PO4) and in vitro (32-P-ATP) phosphorylation of E. coli DNA-binding proteins isolated by chromatography on DNA--cellulose.  相似文献   

16.
Chemotactically wild type Escherichia coli were incubated with L-[methyl-3H]methionine to label the methyl groups of their methyl-accepting chemotaxis proteins. Cells were then treated to specifically demethylate these proteins. We have identified the end product of this demethylation as [3H]methanol in the cell-free medium from treated cells.  相似文献   

17.
Crooke E 《Biochimie》2001,83(1):19-23
DNA replication in Escherichia coli is controlled at the initiation stage, possibly by regulation of the essential activity of DnaA protein. The cellular membrane has long been hypothesized to be involved in chromosomal replication. Accumulating evidence, both in vitro and in vivo, that supports the importance of membrane phospholipids influencing the initiation activity of DnaA is reviewed.  相似文献   

18.
FhuA belongs to a family of specific siderophore transport systems located in the outer membrane of Escherichia coli. The energy required for the transport process is provided by the proton motive force of the cytoplasmic membrane and is transmitted to FhuA by the protein TonB. Although the structure of full-length TonB is not known, the structure of the last 77 residues of a fragment composed of the 86 C-terminal amino acids was recently solved and shows an intertwined dimer (Chang, C., Mooser, A., Pluckthun, A., and Wlodawer, A. (2001) J. Biol. Chem. 276, 27535-27540). We analyzed the ability of truncated C-terminal TonB fragments of different lengths (77, 86, 96, 106, 116, and 126 amino acid residues, respectively) to bind to the receptor FhuA. Only the shortest TonB fragment, TonB-77, could not effectively interact with FhuA. We have also observed that the fragments TonB-77 and TonB-86 form homodimers in solution, whereas the longer fragments remain monomeric. TonB fragments that bind to FhuA in vitro also inhibit ferrichrome uptake via FhuA in vivo and protect cells against attack by bacteriophage Phi80.  相似文献   

19.
20.
TonB couples the cytoplasmic membrane protonmotive force (pmf) to active transport across the outer membrane, potentially through a series of conformational changes. Previous studies of a TonB transmembrane domain mutant (TonB-delta V17) and its phenotypical suppressor (ExbB-A39E) suggested that TonB is conformationally sensitive. Here, two new mutations of the conserved TonB transmembrane domain SHLS motif were isolated, TonB-S16L and -H20Y, as were two new suppressors, ExbB-V35E and -V36D. Each suppressor ExbB restored at least partial function to the TonB mutants, although TonB-delta V17, for which both the conserved motif and the register of the predicted transmembrane domain alpha-helix are affected, was the most refractory. As demonstrated previously, TonB can undergo at least one conformational change, provided both ExbB and a functional TonB transmembrane domain are present. Here, we show that this conformational change reflects the ability of TonB to respond to the cytoplasmic membrane proton gradient, and occurs in proportion to the level of TonB activity attained by mutant-suppressor pairs. The phenotype of TonB-delta V17 was more complex than the -S16L and -H20Y mutations, in that, beyond the inability to be energized efficiently, it was also conditionally unstable. This second defect was evident only after suppression by the ExbB mutants, which allow transmembrane domain mutants to be energized, and presented as the rapid turnover of TonB-delta V17. Importantly, this degradation was dependent upon the presence of a TonB-dependent ligand, suggesting that TonB conformation also changes following the energy transduction event. Together, these observations support a dynamic model of energy transduction in which TonB cycles through a set of conformations that differ in potential energy, with a transition to a higher energy state driven by pmf and a transition to a lower energy state accompanying release of stored potential energy to an outer membrane receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号