首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study was performed of the processes of autolytic degradation of the cells of Saccharomyces cerevisiae and Schizosaccharomyces pombe under conditions simulating the phase of cell death in microbial cultures: (1) during autolysis induced by oleic acid, which is the chemical analogue of factors d2 (autolysis autoinducer), (2) under the effect of extracellular microbial proteinases (enzymatic lysis), and (3) under the concomitant effect of the enzymes of the endogenous autolytic complex and exogenous proteinases (heterolysis). Regulatory mechanisms controlling the rate and profundity of autolysis were elucidated, relying on the stabilization of hydrolytic enzymes and enhancement of their activity in their complexes with a chemical analogue of microbial autoregulatory factors d1, which belong to alkylhydroxybenzenes and fulfill functions of chemical chaperones. The changes in the activity of proteinases and enzymes of the autolytic complex were shown to be dependent on the concentration of the analogue at the moment of complex formation.  相似文献   

2.
Matrix metalloproteinases (MMPs), like other proteinases, can undergo autolytic degradation once activated in vivo. Whereas the activities of these enzymes are tightly regulated by tissue inhibitors of matrix metalloproteinases (TIMPs), it is not clear mechanistically how these enzymes are protected from autolysis in their active state. We previously reported that MMPs particularly MMP-9 and MMP-2 interact with the serum glycoprotein fetuin-A [Arch. Biochem. Biophys. (1995) 322, 250], a member of the cystatin superfamily. In the present analyses, we demonstrate that this interaction protects MMP-9 from autolytic degradation without interfering with its enzymatic activity, allowing it to efficiently digest gelatin. Our data demonstrate that MMP-9 binds to members of the cystatin family with K(diss) ranging from 25 to 58 nM for fetuin-A and 1.5-1.9 microM for cystatin C. The ability of fetuin-A to protect MMP-9 from autolysis requires a molar ratio of at least 8:1 (fetuin-A/MMP-9). More interestingly, our data show that the other members of the cystatin also have the ability to protect MMP-9 from autolysis, provided they are in molar excess relative to MMP-9. Taken together, our data suggest that cystatins, particularly fetuin-A, in any cellular compartment including the circulatory system, efficiently protect MMP-9 and possibly other MMPs from autolysis. This mechanism ensures the digestion of the preferred substrate for MMP-9 without sacrificing the enzyme in the process.  相似文献   

3.
The antimicrobial activity (the ability to activate the microbial autolytic system) and immunostimulatory activity (the ability to improve the phagocytic cell functioning) of 20 food-protein hydrolysates [five food proteins (casein, alpha-lactalbumin, beta-lactoglobulin, ovalbumin and serum albumin) hydrolyzed with four gastrointestinal proteinases (trypsin, alpha-chymotrypsin, pepsin and pancreatin)] were examined. All the food-protein hydrolysates acted antimicrobially in vitro towards all 24 microbial strains tested: autolysis of 20 naturally autolyzing strains was activated, with the autolysis activation index (K(A)) ranging from 1.04 to 22.0, while autolysis was induced to values of 2.81-56.7% in four naturally nonautolyzing strains. When given to mice per os, all the food-protein hydrolysates enhanced the phagocytosing capacity of peritoneal macrophages, with the enhancement index (K(I)) ranging from 1.02 to 1.41. A direct correlation between K(A) and K(I) was observed. We make the presumption that K(I) is a function of K(A).  相似文献   

4.
The haloalkaliphilic, lithoautotrophic, sulfur-oxidizing gram-negative bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum were found to possess a special system for the autoregulation of their growth. The system includes the extracellular autoinducers of anabiosis (the d1 factor) and autolysis (the d2 factor). The principal components of the d1 factor are alkylhydroxybenzenes. The principal components of the d2 factor are free unsaturated fatty acids dominated by oleic acid isomers. Like the respective autoregulators of neutrophilic bacteria, the d1 factor of haloalkaliphilic bacteria presumably controls their growth and transition to a anabiotic state, while the d2 factor controls autolytic processes. Alkylhydroxybenzenes of both microbial and chemical origin were found to influence bacterial respiration. The low-molecular-weight osmoprotectant glycine betaine enhanced the thermostability of trypsin. This suggests that glycine betaine, like the d1 factor, serves as a molecular chaperone.  相似文献   

5.
We demonstrated for the first time that alkylhydroxybenzenes (the d1 microbial autoregulatory factors involved in stress responses of cells) are capable of stabilizing enzymes in aqueous media and increasing their catalytic activity. The stabilizing effect of a chemical analogue of alkylhydroxybenzenes, C7-AHB, was established in in vitro studies with enzymes of microbial origin: a protease produced by Bacillus licheniformis, cellulase produced by Trichoderma viride, and alpha-amylase produced by Bacillus subtilis. This effect manifested itself in considerable extension of the temperature and pH ranges of the enzymatic activity. The modulation of the catalytic activities of the stabilized enzymes depended on the C7-AHB concentration and on the time of preincubation of the complexes obtained. We demonstrated that not only enzymes but also their polymeric substrates formed complexes with C7-AHB, and this also significantly influenced the efficiency of hydrolytic reactions. We also conducted comparative studies on the efficiency of hydrolytic reactions in systems in which the structure of enzymes and/or substrates was modified with C7-AHB.  相似文献   

6.
Propionibacterium freudenreichii plays an important role in Swiss cheese ripening (it produces propionic acid, acetic acid, and CO2). Moreover, autolysis of this organism certainly contributes to proteolysis and lipolysis of the curd because intracellular enzymes are released. By varying external factors, we determined the following conditions which promoted autolysis of both whole cells and isolated cell walls of P. freudenreichii CNRZ 725: (i) 0.1 M potassium phosphate buffer (pH 5.8) at 40°C and (ii) 0.05 to 0.1 M KCl at 40°C. We found that early-exponential-phase cells possessed the highest autolytic activity. It should be emphasized that the pH of Swiss cheese curd (pH 5.5 to 5.7) is near the optimal pH which we determined. Ultrastructural observations by electron microscopy revealed a 16-nm-thick homogeneous cell wall, as well as degradation of the cell wall that occurred concomitantly with cell autolysis. In the presence of 0.05 M potassium chloride, there was a great deal of isolated cell wall autolysis (the optical density at 650 nm decreased 77.5% ± 7.3% in 3 h), and one-half of the peptidoglycan material was released. Finally, the main autolytic activity was due to an N-acetylglucosaminidase activity.  相似文献   

7.
Lytic enzyme activity in autolysing mycelium of Aspergillus niger   总被引:1,自引:0,他引:1  
We have studied changes in the activity of some lytic enzymes contained in mycelium of Aspergillus niger in cultures relative to the autolytic phase of growth. Acid phosphatase, polygalacturonidase and alpha-amylase activity reached its highest level (40.7, and 8 U/sample, respectively) at the initiation of the autolytic phase of growth. 1.3-beta-Glucanase and beta-N-acetylglucosaminidase reached its highest level (3.5 and 2 U/sample, respectively) during the first days of autolysis. Alkaline phosphatase, cellulase, invertase, esterase, chitinase and proteolytic activity is also present in autolysing mycelium of A. niger, though comparatively low. Their maximum activity coincided with the beginning of the autolytic phase of growth. In all enzymes studied here, as autolyis proceeded, enzyme activity decreased by about 90%. Only esterase activity remained nearly constant throughout the whole period of autolysis described here.  相似文献   

8.
Ca2+-dependent proteases isolated from chicken gizzard and bovine aortic smooth muscle were compared with respect to subunit autolysis and the role of autolysis in modulating enzyme activity. The protease isolated from chicken gizzard was a heterodimer consisting of 80,000- and 30,000-dalton subunits. The protease isolated under identical conditions from bovine aorta consisted of 75,000- and 30,000-dalton subunits. In the presence of Ca2+, both enzymes underwent autolysis of their 30,000-dalton subunits with conversion to an 18,000-dalton species. In addition, the 80,000-dalton subunit of the gizzard protease was degraded to a 76,000-dalton form. The Ca2+ concentrations required for autolysis of the 30,000-dalton subunits were different for the two enzymes (i.e. gizzard: K0.5 Ca2+ = 335 microM; aortic: K0.5 Ca2+ = 1,250 microM) although in both cases, stimulation of autolysis by Ca2+ exhibited positive cooperativity. When compared with respect to kinetics of substrate degradation, the native forms of the smooth muscle Ca2+-dependent proteases (gizzard, GIIa = 80,000/30,000-dalton heterodimer; bovine aortic, IIa = 75,000/30,000-dalton heterodimer) exhibited a lag phase in product appearance. On the other hand, the autolyzed forms (gizzard, GIIb = 76,000/18,000-dalton heterodimer; bovine aortic, IIb = 75,000/18,000-dalton heterodimer) exhibited linear rates of substrate degradation. These results were analyzed in terms of autolysis of the 30,000-dalton subunits as determined by the conversion of this subunit to its 18,000 dalton form. For both enzymes, the time course for the autolytic transition, 30,000----18,000 daltons, and Ca2+-dependence of the apparent rate constants for this transition were found to correlate well with the lag phase in enzymatic activity. No such correlation could be established for the 80,000----76,000 dalton autolytic transition of the high molecular mass subunit of the gizzard protease. Our results suggest that catalytic activity of the Ca2+-dependent proteases isolated from gizzard and bovine aortic smooth muscle requires autolysis of the 30,000-dalton subunit. The native or unautolyzed forms of these enzymes appear to be proenzymes that can be activated by autolysis.  相似文献   

9.
The effect of physiological conditions on autolysis and autolytic activity in various strains ofStaphylococcus aureus was determined. The rate of whole cell autolysis ofS. aureus was growth phase dependent and a maximum rate was observed in early stationary phase cultures. However, the autolysins extracted by the freeze-thaw method (cell-wall bound autolytic activity) did not show any significant increase in activity. The addition of NaCl to the growth medium enhanced the rate of autolysis with the highest rate being displayed by cultures grown in 1.5 M NaCl. However, lower autolytic activity was found in the freeze-thaw extracts of cultures grown at higher concentrations of NaCl. The rate of autolysis of cultures grown at 30°C was higher than cultures grown at 37 or 43°C. Thus, the rate of autolysis seems to be independent of the bacterial growth rate. Cultures grown in slightly acidic conditions showed a faster rate of autolysis compared to cultures grown under alkaline conditions. SDS-polyacrylamide gel containing 0.2% crude cell-wall ofS. aureus did not show any obvious correlation with the appearance of any particular lytic band in the zymogram to autolytic activity or rate of autolysis of cultures grown under various environmental conditions. A nonhemolytic phenotype, mutations in the accessory gene regulator, and lysogeny (phages ø11, ø12, ø13) had no obvious effect either on the rate of autolysis or on the pattern of lytic bands in the zymograms.  相似文献   

10.
The aim of this work was to study the effect of autolysis regulators (the fraction of microbial teichoic acids) on the rate of autolysis and the activity of bacterial extracellular lytic enzymes. The regulators of autolysis isolated from 23 cultures belonging to 10 microbial species regulated the rate of autolysis in Bacillus, E. coli and Streptococcus lactis. The regulators either activated or inhibited autolysis depending on the substrate (of a bacterium to be subjected to autolysis). The quantitative dependence of the autolysis rate on the regulator concentration was specific for each pair 'regulator--substrate'. The regulatory properties of the fraction of teichoic acids varied depending on the age of a culture from which they had been isolated. The regulators of autolysis, with an exception of the preparation from E. coli, inhibited the activity of B. subtilis extracellular lytic enzymes in the course of their action on E. coli cells. The possibility for using the regulators of autolysis in microbiological processes is discussed.  相似文献   

11.
12.
AIMS: To evaluate the autolytic phenotype of Pediococcus acidilactici and P. pentosaceus, the peptidoglycan hydrolases content and the effect of pediocin AcH/PA-1 and autolysins on cell lysis. METHODS AND RESULTS: The autolytic phenotype of Pediococcus strains was evaluated under starvation conditions in potassium phosphate buffer. The strains tested showed an extent of autolysis ranging between 40 and 90% after 48 h of starvation at 37 degrees C. Peptidoglycan hydrolase content was evaluated by renaturing sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) using cells of Micrococcus lysodeikticus as a target for the enzymatic activity and a major activity band migrating at about 116 kDa was detected. Additional secondary lytic bands migrating in a range of molecular weight between 45 and 110 kDa were also detected. The lytic activity, evaluated in the presence of different chemicals, was retained in 15 mM CaCl2 and in a range of pH between 5 and 9.5 but was strongly reduced in presence of 8% NaCl and in the presence of protease inhibitors. The substrate specificity of peptidoglycan hydrolases of Pediococcus strains was evaluated in renaturing SDS-PAGE incorporating cells of different bacterial species. Lytic activity was detected against cells of Lactococcus lactis subsp. lactis, L. delbrueckii subsp. bulgaricus, Lactobacillus helveticus and Listeria monocytogenes. The interaction between pediocin AcH/PA-1 and autolysis was evaluated and a relevant effect of bacteriocin in cell-induced lysis was observed. CONCLUSIONS: The autolytic phenotype is widely distributed among P. acidilactici and P. pentosaceus and the rate of autolysis is high in the majority of the analysed strains. Several autolytic bands, detected by renaturing SDS-PAGE, retained their activity against several lactic acid bacteria and L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterization of the autolytic phenotype of Pediococcus acidilactici and P. pentosaceus strains should expand the knowledge of their role in fermentation processes where these species occur as primary or secondary bacterial population.  相似文献   

13.
Coleoptile cell wall proteins from Zea mays L. hybrid B 37 × Mo 17 were extracted and fractionated. Three enzymes identified in that extract were examined to determine their role in cell wall hydrolysis with a goal of evaluating the extent to which they participated in autohydrolytic reactions. Two separate proteins were identified as endo- and exo-glucanases. Incubation of these enzymes with heat inactivated cell walls, liberates products derived from the constitutive (1→3), (1→4)-β- d -glucan. The release of sugars from walls resembles that of cell wall autolysis. A third cell wall protein degraded polysaccharides in a more general manner, releasing carbohydrates containing xylose, arabinose, galactose and glucose. Polyclonal antibodies raised against the exoglucanase protein suppressed autolytic reactions of isolated cell wall.  相似文献   

14.
The molecular mechanism of the autolysis of rat alpha-chymotrypsin B was investigated. In addition to the two already known autolytic sites, Tyr146 and Asn147, a new site formed by Phe114 was identified. The former two sites and the latter one are located in the autolysis and the interdomain loops, respectively. By eliminating these sites by site-directed mutagenesis, their involvement in the autolysis and autolytic inactivation processes was studied. Mutants Phe114-->Ile and Tyr146-->His/Asn147-->Ser, that had the same enzymatic activity and molecular stability as the wild-type enzyme, displayed altered routes of autolytic degradation. The Phe114-->Ile mutant also exhibited a significantly slower autolytic inactivation (its half-life was 27-fold longer in the absence and sixfold longer in the presence of Ca2+ ions) that obeyed a first order kinetics instead of the second order displayed by wild-type chymotrypsin inactivation. The comparison of autolysis and autolytic inactivation data showed that: (a) the preferential cleavage of sites followed the order of Tyr146-Asn147 --> Phe114 --> other sites; (b) the cleavage rates at sites Phe114 and Tyr146-Asn147 were independent from each other; and (c) the hydrolysis of the Phe114-Ser115 bond was the rate determining step in autolytic inactivation. Thus, it is the cleavage of the interdomain loop and not of the autolysis or other loops that determines the half-life of chymotrypsin activity.  相似文献   

15.
Earthworm serine protease is more stable and is less affected by organic solvents and detergent than other proteases. However, it is inactivated, probably by autolysis, at 60 degrees C or above under alkaline conditions. Further stabilization was managed by chemical modification of the enzyme with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and phenylglyoxal to protect the activity from the autolytic inactivation. Stabilization was possible also under acidic conditions, in which the stability of the enzyme was rather low, by immobilization with folded sheet mesoporous material. Thus, further stabilization of the enzyme has been achieved by chemical modification or immobilization.  相似文献   

16.
AIM: To determine the autolytic phenotype of five species in the Bacillus cereus group. METHODS AND RESULTS: The autolytic rate of 96 strains belonging to five species in the B. cereus group was examined under starvation conditions at pH 6, 6.5 and 8.5 in different buffers. The autolytic rate was strain-dependent with a wide variability at pH 6, but higher and more uniform at pH 6.5. At pH 8.5, and respect to the extent of autolysis at pH 6.5, it was relatively low for most of the strains with the lowest values between 13 and 52% in Bacillus mycoides and Bacillus pseudomycoides. Peptidoglycan hydrolase patterns evaluated by renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis using cells of Bacillus thuringiensis ssp. tolworthi HD125 as an indicator, revealed complex profiles with lytic bands of about 90, 63, 46, 41, 38, 32, 28 and 25 kDa in B. cereus, B. thuringiensis and Bacillus weihenstephanensis. Bacillus mycoides and B. pseudomycoides had simpler profiles with lytic bands of 63, 46 and 38 kDa. Changes in the autolytic pattern were observed for cells harvested at the stationary phase of growth (72 h) showing an increase in the intensity of the 25 kDa band in the case of B. cereus, B. thuringiensis and B. weihenstephanensis, while no changes were observed for B. mycoides. Using Micrococcus lysodeicticus and Listeria monocytogenes as indicators lytic activity was retained by proteins of 63, 46, 38, 32 and 25 kDa and a new one of about 20 kDa in B. mycoides. Growth in the different media did not affect the autolytic pattern. NaCl abolished the activity of all the peptidoglycan hydrolases except for those of B. mycoides and B. weihenstephanensis. Lytic activity was retained in the presence of MgCl(2), MnCl(2) and EDTA and increased at basic pH. CONCLUSIONS: Bacillus cereus/B. thuringiensis/B. weihenstephanensis showed a high extent of autolysis around neutral pH, even though they presented relatively complex autolysin profiles at alkaline pH. Bacillus mycoides/B. pseudomycoides had a higher extent of autolysis at acidic pH and a simpler autolysin pattern. SIGNIFICANCE AND IMPACT OF THE STUDY: Information on the autolytic phenotype expand the phenotypic characterization of the different species in the B. cereus group.  相似文献   

17.
Lysophosphatidylcholine (LPC) was found to cause autolysis of Bacillus subtilis 168 cells growing logarithmically at concentrations higher than 20 m, by inducing the activity of autolytic enzymes. The lytic activity depended upon the carbon-chain length of the acyl moiety in the LPC molecule, being most effective with palmitoyl LPC. Lysophosphatidylethanolamine also caused cell lysis but to a lesser extent, whereas lysophosphatidylglycerol did not. LPC stimulated cell autolysis in TRIS-KCl buffer and potassium phosphate buffer but was ineffective in distilled water. LPC had no influence on the activity in vitro of partially purified autolytic enzymes.Correspondence to: T. Tsuchido  相似文献   

18.
The extent to which autolytic microbial enzymes are involved in the fate of microorganisms ingested by phagocytes has not been determined. It is known, however, that activation of degradative enzymes occurs during certain microbicidal events. We examined the possible role of the pneumococcal autolytic enzyme (an N-acetylmuramyl-L-alanine amidase) in the loss of viability and degradation of pneumococci during phagocytosis by rabbit polymorphonuclear leukocytes. Three bacterial systems were compared: (a) wild type pneumococci with an active autolytic system; (b) wild type bacteria grown under conditions that block the endogenous autolytic activity and (c) a mutant strain defective in the major autolytic enzyme of this bacterium. No differences could be detected between the autolysis-positive and negative bacteria in the rate of killing and in the fate of macromolecular cell constituents during ingestion by rabbit peritoneal polymorphonuclear leukocytes.  相似文献   

19.
Glycosylation is often cited as having a stabilizing effect upon proteins with respect to proteolysis, thermolysis and other forms of degradation. We present here a model study on an autolytic protease that has been chemically glycosylated to produce single glycoforms. The resulting glycosylated enzymes are more stable with respect to their own autolytic degradation and that by other proteases. Kinetic parameters for protease activity with respect to the degradation of small-molecule amide substrate reveal no significant change in inherent activity thereby suggesting that reduced autolysis and proteolysis are a consequence of stabilization, perhaps by steric blockade of cleavage points or alteration of local unfolding kinetics. Variation in glycan identity suggests that greater glycan size leads to greater stabilization.  相似文献   

20.
Purified calpain II from vascular smooth muscle is a heterodimer consisting of catalytic (Mr = 76,000) and regulatory (Mr = 30,000) subunits. In the presence of Ca2+, the regulatory subunit undergoes stepwise autolysis resulting in enzyme activation. By slowing autoproteolysis, we identified major autolytic intermediates of the regulatory subunit. Gas-phase sequencing of the regulatory subunit and its autolytic fragments revealed that the NH2-terminus of the Mr = 30,000 form was blocked, whereas each fragment yielded a unique amino acid sequence, suggesting that autolysis proceeds in an NH2- to COOH-terminal direction. By comparison of actual amino acid sequences of autolytic cleavage intermediates to the full sequence deduced from cDNA, we have identified the major autolytic cleavage sites. Three different peptide bonds were cleaved, with neutral amino acids predominating on both sides of the peptide bond hydrolyzed. Importantly, leucine or isoleucine was identified in the second position upstream from the cleavage site in all three autolytic sequences. The presence of an upstream leucine residue in the autolytic cleavage sequence is reminiscent of the structure of potent microbial and synthetic peptide inhibitors of calpain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号