首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Addition of phytohaemagglutinin (PHA) to the [32P]Pi-prelabelled JURKAT cells, a human T-cell leukaemia line, resulted in a decrease of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] to about 35% of the control value. The decrease was almost complete within 30s after the PHA addition. This decrease was followed by an increase in the 32P-labelling of phosphatidic acid (maximally 2.8-fold at 2 min). The stimulation of myo-[2-3H]inositol-prelabelled JURKAT cells by PHA induced an accumulation of [2-3H]inositol trisphosphate in the presence of 5 mM-LiCl. The result indicates hydrolysis of PtdIns (4,5)P2 by a phospholipase C. The PHA stimulation of JURKAT cells induced about 6-fold increase in the cytosolic free Ca2+ concentration, [Ca2+]i, which was reported by Quin-2, a fluorescent Ca2+ indicator. Studies with partially Ca2+-depleted JURKAT cells, with the Ca2+ ionophore A23187, and with 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate indicate that the breakdown of PtdIns(4,5)P2 is not mediated through changes of [Ca2+]i. These results therefore indicate that the PHA-induced breakdown of PtdIns(4,5)P2 in JURKAT cells is not dependent on the Ca2+ mobilization.  相似文献   

3.
Primary cilium has emerged as mechanosensor to subtle flow variations in epithelial cells, but its role in shear stress detection remains controversial. To probe the function of this non-motile organelle in shear stress detection by cells, we compared calcium signalling responses induced by shear stress in ciliated and unciliated MDCK cells. Cytosolic free Ca2+ ([Ca2+]i) was measured using Fura-PE3 video imaging fluorescence microscopy in response to shear stress due to laminar flow (385 μl s?1). Our results show that both unciliated and ciliated MDCK cells are shear stress sensitive via ATP release and autocrine feedback through purinergic receptors. However, purinergic calcium signals differed in response intensity and receptor subtypes. In unciliated cells, shear stress-induced elevation in [Ca2+]i was predominantly mediated through P2X receptors (P2XR). In contrast, calcium mobilization in ciliated MDCK cells resulted from P2YRs and store-operated Ca2+-permeable channels besides P2XRs. These findings lend support to the hypothesis that ATP release in response to shear stress is independent of the primary cilium and that transduction of mechanical strain into a specific biochemical responses stems on the mobilization of different sets of purinergic receptors.  相似文献   

4.
Patch-clamp single-channel current recording experiments have been carried out on intact insulin-secreting RINm5F cells. Voltage-activation of high-conductance K+ channels were studied by selectively depolarizing the electrically isolated patch membrane under conditions with normal Ca2+ concentration in the bath solution but with or without Ca2+ in the patch pipette solution. When Ca2+ was present in the pipette, 40 mV to 120 mV depolarizing pulses (100 ms) from the normal resting potential (-70 mV) regularly evoked tetraethylammonium-sensitive large outward single-channel currents and the average open state probability during the pulses varied from about 0.015 (40 mV pulses) to 0.1 (120 mV pulses). In the absence of Ca2+ in the pipette solution the same protocol resulted in fewer and shorter K+ channel openings and the open-state probability varied from about 0.0015 (40 mV pulses) to about 0.03 (120 mV pulses). It is concluded that Ca2+ entering voltage-gated channels raises [Ca2+]i locally and thereby markedly enhances the open-state probability of tetraethylammonium-sensitive voltage-gated high-conductance K+ channels.  相似文献   

5.
We demonstrate that the C-terminal truncation of hIK1 results in a loss of functional channels. This could be caused by either (i) a failure of the channel to traffic to the plasma membrane or (ii) the expression of non-functional channels. To delineate among these possibilities, a hemagglutinin epitope was inserted into the extracellular loop between transmembrane domains S3 and S4. Surface expression and channel function were measured by immunofluorescence, cell surface immunoprecipitation, and whole-cell patch clamp techniques. Although deletion of the last 14 amino acids of hIK1 (L414STOP) had no effect on plasma membrane expression and function, deletion of the last 26 amino acids (K402STOP) resulted in a complete loss of membrane expression. Mutation of the leucine heptad repeat ending at Leu(406) (L399A/L406A) completely abrogated membrane localization. Additional mutations within the heptad repeat (L385A/L392A, L392A/L406A) or of the a positions (I396A/L403A) resulted in a near-complete loss of membrane-localized channel. In contrast, mutating individual leucines did not compromise channel trafficking or function. Both membrane localization and function of L399A/L406A could be partially restored by incubation at 27 degrees C. Co-immunoprecipitation studies demonstrated that leucine zipper mutations do not compromise multimer formation. In contrast, we demonstrated that the leucine zipper region of hIK1 is capable of co-assembly and that this is dependent upon an intact leucine zipper. Finally, this leucine zipper is conserved in another member of the gene family, SK3. However, mutation of the leucine zipper in SK3 had no effect on plasma membrane localization or function. In conclusion, we demonstrate that the C-terminal leucine zipper is critical to facilitate correct folding and plasma membrane trafficking of hIK1, whereas this function is not conserved in other gene family members.  相似文献   

6.
The expression of protein kinase C (PKC) isoforms and the modulation of Ca2+ mobilization by PKC were investigated in the human submandibular duct cell line A253. Three new PKC (nPKC) isoforms (, , and ) and one atypical PKC (aPKC) isoform () are expressed in this cell line. No classical PKC (cPKC) isoforms were present. The effects of the PKC activator phorbol 12-myristate-13-acetate (PMA) and of the PKC inhibitors calphostin C (CC) and bisindolymaleimide I (BSM) on inositol 1,4,5-trisphosphate (IP3) and Ca2+ responses to ATP and to thapsigargin (TG) were investigated. Pre-exposure to PMA inhibited IP3 formation, Ca2+ release and Ca2+ influx in response to ATP. Pre-exposure to CC or BSM slightly enhanced IP3 formation but inhibited the Ca2+ release and the Ca2+ influx induced by ATP. In contrast, pre-exposure to PMA did not modify the Ca2+ release induced by TG, but reduced the influx of Ca2+ seen in the presence of this Ca2+-ATPase inhibitor. These results suggest that PKC modulates elements of the IP3/Ca2+ signal transduction pathway in A253 cells by (1) inhibiting phosphatidylinositol turnover and altering the sensitivity of the Ca2+ channels to IP3, (2) altering the activity, the sensitivity to inhibitors, or the distribution of the TG-sensitive Ca2+ ATPase, and (3) modulating Ca2+ entry pathways.  相似文献   

7.
NK cell-induced cytotoxicity is dependent on a Ca2+ increase in the target   总被引:3,自引:0,他引:3  
In previous work we showed that programmed cell death (PCD) in thymocytes is mediated by a sustained increase in cytosolic Ca2+ concentration, resulting in the activation of an endogenous endonuclease, DNA fragmentation, and cell death. In this study we investigated the roles of Ca2+ and DNA fragmentation in target cell killing by natural killer (NK) cells. The effector cells induced a rapid, sustained increase in cytosolic Ca2+ concentration in Jurkat target cells. Buffering the target cell cytosolic Ca2+ with the Ca2(+)-selective dye, quin-2, prevented target cell killing. Extensive DNA fragmentation was associated with killing in every target tested, and this response was also blocked by quin-2. The endonuclease inhibitor, aurintricarboxylic acid, inhibited both DNA fragmentation and killing without influencing the Ca2+ increase in target cells. Thus, it is concluded that NK cell killing depends on a Ca2+ increase and appears to involve endogenous endonuclease activation in target cells.  相似文献   

8.
9.
The effect of Ca2+ ions on methanogenesis and growth of Methanothermobacter thermautotrophicus was investigated. The calcium chelator ethylene glycol bis(2-aminoethylether)-N,N,N',N'-tetra-acetic acid, calcium ionophore A23187 and ruthenium red all inhibited growth of this strain. Methane formation was strongly dependent on the external Ca2+ concentration in a resting cell suspension. In addition, methanogenesis of Ca2+ preloaded cells was stimulated by 400%. Inhibitor studies revealed that Co2+ and Ni2+, inorganic antagonists of Ca2+ transport, strongly inhibited methanogenesis in these cells. Interestingly, our findings imply that one of the enzymes of methanogenesis might catalyse a Ca2+ -dependent step and allow a direct activation of methanogenesis by Ca2+ ions.  相似文献   

10.
CD2 is a T cell surface glycoprotein that participates in T cell adhesion and activation. These processes are dynamically interrelated, in that T cell activation regulates the strength of CD2-mediated T cell adhesion. The lateral redistribution of CD2 and its ligand CD58 (LFA-3) in T cell and target membranes, respectively, has also been shown to affect cellular adhesion strength. We have used the fluorescence photobleaching recovery technique to measure the lateral mobility of CD2 in plasma membranes of resting and activated Jurkat T leukemia cells. CD2-mediated T cell activation caused lateral immobilization of 90% of cell surface CD2 molecules. Depleting cells of cytoplasmic Ca2+, loading cells with dibutyric cAMP, and disrupting cellular microfilaments each partially reversed the effect of CD2-mediated activation on the lateral mobility of CD2. These intracellular mediators apparently influence the same signal transduction pathways, because the effects of the mediators on CD2 lateral mobility were not additive. In separate experiments, activation-associated cytoplasmic Ca2+ mobilization was found to require microfilament integrity and to be negatively regulated by cAMP. By directly or indirectly controlling CD2 lateral diffusion and cell surface distribution, cytoplasmic Ca2+ mobilization may have an important regulatory role in CD2 mediated T cell adhesion.  相似文献   

11.
12.
The concentration of intracellular free Ca2+ ([Ca2+]i) was measured in dissociated bovine parathyroid cells using the fluorescent indicator quin-2 or fura-2. Small increases in the concentration of extracellular Ca2+ produced relatively slow, monophasic increases in [Ca2+]i in quin-2-loaded cells, but rapid and transient increases followed by lower, yet sustained (steady-state), [Ca2+]i increases in fura-2-loaded cells. The different patterns of change in [Ca2+]i reported by quin-2 and fura-2 appear to result from the greater intracellular Ca2+-buffering capacity present within quin-2-loaded cells, which tends to damp rapid and transient changes in [Ca2+]i. In fura-2-loaded parathyroid cells, other divalent cations (Mg2+, Sr2+, Ba2+) also evoked transient increases in [Ca2+]i, and their competitive interactions suggest that they all affect Ca2+ transients by acting on a common site. In contrast, divalent cations failed to cause increases in steady-state levels of cytosolic Ca2+. Low concentrations of La3+ (0.5-10 microM) depressed steady-state levels of cytosolic Ca2+ elicited by extracellular Ca2+ but were without effect on transient increases in [Ca2+]i elicited by extracellular Ca2+, Mg2+ or Sr2+, suggesting that increases in the steady-state [Ca2+]i arise from the influx of extracellular Ca2+. Mg2+- and Sr2+-induced cytosolic Ca2+ transients persisted in the absence of extracellular Ca2+ but were abolished by pretreatment with ionomycin. These results show that cytosolic Ca2+ transients arise from the mobilization of cellular Ca2+ from a nonmitochondrial pool. Extracellular divalent cations thus appear to act at some site on the surface of the cell, and this site can be considered a "Ca2+ receptor" which enables the parathyroid cell to detect small changes in the concentration of extracellular Ca2+.  相似文献   

13.
Gallium nitrate is an antihypercalcemic agent with established actions on bone. The effects of Ga(NO3)3 on parathyroid hormone (PTH) release, cytoplasmic Ca2+ concentration ([Ca2+]i) and cAMP production of enzymatically dispersed parathyroid cells from bovine as well as normal and pathological human parathyroid glands have now been studied. Ga3+ at 200 microM inhibited PTH release whereas 600 microM NO3- had no effect. The inhibition was additive to that obtained by elevating extracellular Ca2+. Unlike Ca2+, Ga3+ failed to increase [Ca2+]i or reduce cAMP formation. The results indicate that Ga3+ inhibits PTH release by a mechanism other than activation of the cation receptor of the parathyroid cells. This mechanism may contribute also to inhibition by other cations.  相似文献   

14.
Using the whole-cell variation of the patch-clamp technique, we have demonstrated that retinoic acid (RA) blocks Ca channels and inhibits cell proliferation in a mouse hybridoma cell line (MHY206) derived from a fusion of murine myeloma and splenic B cells. In 25 mM external Ca, and with an Na internal solution containing aspartate, cAMP, and Mg-ATP, inward currents were activated in these cells from holding potentials more negative than -70 mV, peaked at voltage steps up to -20 mV, and were voltage-inactivated within the 125-msec duration of the pulse. With more positive pulses, outward current carried by Na ions permeating through the Ca channels were seen. Application of RA blocked both inward and outward current through the Ca channels in a dose-dependent manner, with 50% block at a concentration of around 5 x 10(-5) M. Proliferation was blocked by 75% at that concentration, and the same relation between the reduction in current and proliferation was seen throughout the concentration range. A similar reduction of Ca currents and proliferation was demonstrated with octanol, a long-chain alcohol that has recently been reported to block Ca channels. These results suggest a role for Ca channels in the proliferation of MHY206 cells and implicate blockage of these channels as contributing to the antiproliferative activity of RA.  相似文献   

15.
Stimuli which enhance secretion from parathyroid cells such as low extracellular Ca2+ or Mg2+ are associated with a decrease in the cytosolic Ca2+ concentration as measured by quin2. Current evidence suggests that increased production of inositol 1,4,5-triphosphate (IP3) releases Ca2+ from cellular stores thus increasing cytosolic Ca2+. We used saponin-permeabilized dispersed bovine parathyroid cells to study the effect of IP3 on intracellular Ca2+. IP3 released Ca2+ from these cells in a dose-dependent manner; half-maximal response occurred with 0.3 microM IP3 and maximal response with 1.2 microM IP3. Permeabilized cells incubated in the presence of the mitochondrial inhibitor antimycin A released a similar amount of Ca2+ suggesting that IP3 releases Ca2+ from a non-mitochondrial pool. These results suggest that IP3 regulates cytosolic Ca2+ in this system and may function as a second messenger controlling hormone secretion.  相似文献   

16.
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx   总被引:15,自引:0,他引:15  
Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.  相似文献   

17.
The conductance of the Ca2+-sensitive K+-channels in human red cell membranes has been determined as a function of the intracellular pH. A sudden increase in the intracellular concentration of ionized calcium was established by addition of ionophore A23187 to a suspension of cells in buffer-free, Ca2+-containing salt solution. At the various cellular pH-values cellular concentrations of ionized Ca, saturating with respect to activation of the Ca2+-sensitive K+-conductance, were obtained by the use of varied concentrations of extracellular Ca2+ and added ionophore A23187. Changes in membrane potential was monitored as CCCP-mediated changes in extracellular pH. Initial net effluxes of K+, cellular K+ contents and the K+ Nernst equilibrium potentials were calculated from flame photometric measurements. Cellular Ca-contents were determined by aid of 45Ca. With cellular Ca2+ at the saturating level with respect to activation of the K+-channel the K+-conductance calculated from these data was independent of extracellular pH and a steep function of cellular pH with a half maximal conductance of 31 microSeconds/cm2 at a cellular pH of 6.1. The K+-conductance is not a simple function of cellular pH (pHc). From pHc = 6.5 and down to pHc = 6.0 a Hill-coefficient of 2.5 was found, indicating cooperativity between at least two sites regulating the conductance. Below pHc = 6.0 an extremely high Hill-coefficient of 11 was found, probably indicating that the additional titration of the channel protein leads to an increased cooperativity. The importance, as a physiological regulatory mechanism, of a K+-conductance increasing from zero to maximal conductance within less than one unit of pH, is discussed.  相似文献   

18.
The mechanism by which Bcl-2 inhibits cell death is unknown. Ithas been suggested that Bcl-2 functions as an antioxidant. BecauseBcl-2 is localized mainly to the membranes of the endoplasmic reticulum(ER) and the mitochondria, which represent the main intracellularstorage sites for Ca2+, wehypothesized that Bcl-2 might protect cells against oxidant injury byaltering intracellular Ca2+homeostasis. To test this hypothesis, we examined the effect of oxidanttreatment on viability in normal rat kidney (NRK) cells and in NRKcells stably transfected with Bcl-2 in the presence or absence ofintracellular Ca2+, and wecompared the effect of Bcl-2 expression on oxidant-induced intracellular Ca2+ mobilizationand on ER and mitochondrial Ca2+pools. NRK cells transfected with Bcl-2 (NRK-Bcl-2) were significantly more resistant toH2O2-inducedcytotoxicity than control cells. EGTA-AM, an intracellularCa2+ chelator, as well as theabsence of Ca2+ in the medium,reducedH2O2-inducedcytotoxicity in both cell lines. Compared with controls, cellsoverexpressing Bcl-2 showed a delayed rise in intracellularCa2+ concentration([Ca2+]i)afterH2O2treatment. After treatment with theCa2+ ionophore ionomycin,Bcl-2-transfected cells showed a much quicker decrease after themaximal rise than control cells, suggesting stronger intracellularCa2+ buffering, whereas treatmentwith thapsigargin, an inhibitor of the ERCa2+-ATPases, transientlyincreased[Ca2+]iin control and in Bcl-2-transfected cells. Estimates of mitochondrial Ca2+ stores using an uncoupler ofoxidative phosphorylation show that NRK-Bcl-2 cells have a highercapacity for mitochondrial Ca2+storage than control cells. In conclusion, Bcl-2 may prevent oxidant-induced cell death, in part, by increasing the capacity ofmitochondria to store Ca2+.

  相似文献   

19.
Forisomes are giant self‐assembling mechanoproteins that undergo reversible structural changes in response to Ca2+ and various other stimuli. Artificial forisomes assembled from the monomer MtSEO‐F1 can be used as smart biomaterials, but the molecular basis of their functionality is not understood. To determine the role of protein polymerization in forisome activity, we tested the Ca2+ association of MtSEO‐F1 dimers (the basic polymerization unit) by circular dichroism spectroscopy and microscale thermophoresis. We found that soluble MtSEO‐F1 dimers neither associate with Ca2+ nor undergo structural changes. However, polarization modulation infrared reflection absorption spectroscopy revealed that aggregated MtSEO‐F1 dimers and fully‐assembled forisomes associate with Ca2+, allowing the hydration of poorly‐hydrated protein areas. A change in the signal profile of complete forisomes indicated that Ca2+ interacts with negatively‐charged regions in the protein complexes that only become available during aggregation. We conclude that aggregation is required to establish the Ca2+ response of forisome polymers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号