首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Orbit, a Drosophila ortholog of microtubule plus-end enriched protein CLASP, plays an important role in many developmental processes involved in microtubule dynamics. Previous studies have shown that Orbit is required for asymmetric stem cell division and cystocyte divisions in germline cysts and for the development of microtubule networks that interconnect oocyte and nurse cells during oogenesis. Here, we examined the cellular localization of Orbit and its role in cyst formation during spermatogenesis. In male germline stem cells, distinct localization of Orbit was first observed on the spectrosome, which is a spherical precursor of the germline-specific cytoskeleton known as the fusome. In dividing stem cells and spermatogonia, Orbit was localized around centrosomes and on kinetochores and spindle microtubules. After cytokinesis, Orbit remained localized on ring canals, which are cytoplasmic bridges between the cells. Thereafter, it was found along fusomes, extending through the ring canal toward all spermatogonia in a cyst. Fusome localization of Orbit was not affected by microtubule depolymerization. Instead, our fluorescence resonance energy transfer experiments suggested that Orbit is closely associated with F-actin, which is abundantly found in fusomes. Surprisingly, F-actin depolymerization influenced neither fusome organization nor Orbit localization on the germline-specific cytoskeleton. We revealed that two conserved regions of Orbit are required for fusome localization. Using orbit hypomorphic mutants, we showed that the protein is required for ring canal formation and for fusome elongation mediated by the interaction of newly generated fusome plugs with the pre-existing fusome. The orbit mutation also disrupted ring canal clustering, which is essential for folding of the spermatogonia after cytokinesis. Orbit accumulates around centrosomes at the onset of spermatogonial mitosis and is required for the capture of one of the duplicated centrosomes onto the fusome. Moreover, Orbit is involved in the proper orientation of spindles towards fusomes during synchronous mitosis of spermatogonial cysts.  相似文献   

2.
BACKGROUND: During Drosophila oogenesis a membranous organelle called the fusome has a key function in the establishment of oocyte fate and polarity, ultimately leading to the establishment of the major body axes of the animal. The fusome is necessary for the microtubule-driven restriction of markers of oocyte fate to the oocyte, but the mechanism by which the fusome organizes the microtubules is not known.RESULTS: We have identified the spectraplakin Short stop (Shot) as a new component of the fusome. Spectraplakins are giant cytoskeletal linker proteins, with multiple isoforms produced from each gene. Shot is the sole spectraplakin in Drosophila. The phenotype caused by the absence of Shot is not similar to that of other components of the fusome but instead is similar to the absence of the downstream components that interact with microtubules: the dynein/dynactin-complex-associated proteins Egalitarian and BicaudalD. Shot is required for the association of microtubules with the fusome and the subsequent specification of the oocyte in 16-cell cysts. Shot is also required for the concentration of centrosomes into the oocyte, a process thought to be independent of microtubules because it still occurs in the presence of microtubule depolymerizing drugs. This suggests that Shot may protect some microtubules from depolymerization and that these microtubules are sufficient for this process.CONCLUSIONS: Shot provides the missing link between the fusome and microtubules within meiotic cysts, which is essential for the establishment of the oocyte. Shot associates with the fusome and is required for microtubule organization. We suggest that it does this directly, via its microtubule binding GAS2 domain.  相似文献   

3.
Differentiation of the Drosophila oocyte takes place in a cyst of 16 interconnected germ cells and is dependent on a network of microtubules that becomes polarized as differentiation progresses (polarization). We have investigated how the microtubule network polarizes using a GFP-tubulin construct that allows germ-cell microtubules to be visualized with greater sensitivity than in previous studies. Unexpectedly, microtubules are seen to associate with the fusome, an asymmetric germline-specific organelle, which elaborates as cysts form and undergoes complex changes during cyst polarization. This fusome-microtubule association occurs periodically during late interphases of cyst divisions and then continuously in 16-cell cysts that have entered meiotic prophase. As meiotic cysts move through the germarium, microtubule minus ends progressively focus towards the center of the fusome, as visualized using a NOD-lacZ marker. During this same period, discrete foci rich in gamma tubulin that very probably correspond to migrating cystocyte centrosomes also associate with the fusome, first on the fusome arms and then in its center, subsequently moving into the differentiating oocyte. The fusome is required for this complex process, because microtubule network organization and polarization are disrupted in hts(1) mutant cysts, which lack fusomes. Our results suggest that the fusome, a specialized membrane-skeletal structure, which arises in early germ cells, plays a crucial role in polarizing 16-cell cysts, at least in part by interacting with microtubules and centrosomes.  相似文献   

4.
The PAR-1 kinase is required for the posterior localisation of the germline determinants in C. elegans and Drosophila, and localises to the posterior of the zygote and the oocyte in each case. We show that Drosophila PAR-1 is also required much earlier in oogenesis for the selection of one cell in a germline cyst to become the oocyte. Although the initial steps in oocyte determination are delayed, three markers for oocyte identity, the synaptonemal complex, the centrosomes and Orb protein, still become restricted to one cell in mutant clones. However, the centrosomes and Orb protein fail to translocate from the anterior to the posterior cortex of the presumptive oocyte in region 3 of the germarium, and the cell exits meiosis and becomes a nurse cell. Furthermore, markers for the minus ends of the microtubules also fail to move from the anterior to the posterior of the oocyte in mutant clones. Thus, PAR-1 is required for the maintenance of oocyte identity, and plays a role in microtubule-dependent localisation within the oocyte at two stages of oogenesis. Finally, we show that PAR-1 localises on the fusome, and provides a link between the asymmetry of the fusome and the selection of the oocyte.  相似文献   

5.
Maternally inherited mitochondria and other cytoplasmic organelles play essential roles supporting the development of early embryos and their germ cells. Using methods that resolve individual organelles, we studied the origin of oocyte and germ plasm-associated mitochondria during Drosophila oogenesis. Mitochondria partition equally on the spindle during germline stem cell and cystocyte divisions. Subsequently, a fraction of cyst mitochondria and Golgi vesicles associates with the fusome, moves through the ring canals, and enters the oocyte in a large mass that resembles the Balbiani bodies of Xenopus, humans and diverse other species. Some mRNAs, including oskar RNA, specifically associate with the oocyte fusome and a region of the Balbiani body prior to becoming localized. Balbiani body development requires an intact fusome and microtubule cytoskeleton as it is blocked by mutations in hu-li tai shao, while egalitarian mutant follicles accumulate a large mitochondrial aggregate in all 16 cyst cells. Initially, the Balbiani body supplies virtually all the mitochondria of the oocyte, including those used to form germ plasm, because the oocyte ring canals specifically block inward mitochondrial transport until the time of nurse cell dumping. Our findings reveal new similarities between oogenesis in Drosophila and vertebrates, and support our hypothesis that developing oocytes contain specific mechanisms to ensure that germ plasm is endowed with highly functional organelles.  相似文献   

6.
BACKGROUND: Drosophila oocyte determination involves a complex process by which a single cell within an interconnected cyst of 16 germline cells differentiates into an oocyte. This process requires the asymmetric accumulation of both specific messenger RNAs and proteins within the future oocyte as well as the proper organization of the microtubule cytoskeleton, which together with the fusome provides polarity within the developing germline cyst. RESULTS: In addition to its previously described late oogenic role in the establishment of anterior-posterior polarity and subsequent embryonic axis formation, the Drosophila par-1 gene is required very early in the germline for establishing cyst polarity and for oocyte specification. Germline clonal analyses, for which we used a protein null mutation, reveal that Drosophila par-1 (par-1) is required for the asymmetric accumulation of oocyte-specific factors as well as the proper organization of the microtubule cytoskeleton. Similarly, somatic clonal analyses indicate that par-1 is required for microtubule stabilization in follicle cells. The PAR-1 protein is localized to the fusome and ring canals within the developing germline cyst in direct contact with microtubules. Likewise, in the follicular epithelium, PAR-1 colocalizes with microtubules along the basolateral membrane. However, in either case PAR-1 localization is independent of microtubules. CONCLUSIONS: The Drosophila par-1 gene plays at least two essential roles during oogenesis; it is required early in the germline for organization of the microtubule cytoskeleton and subsequent oocyte determination, and it has a second, previously described role late in oogenesis in axis formation. In both cases, par-1 appears to exert its effects through the regulation of microtubule dynamics and/or stability, and this finding is consistent with the defined role of the mammalian PAR-1 homologs.  相似文献   

7.
The deadlock gene is required for a number of key developmental events in Drosophila oogenesis. Females homozygous for mutations in the deadlock gene lay few eggs and those exhibit severe patterning defects along both the anterior-posterior and dorsal-ventral axis. In this study, we analyzed eggs and ovaries from deadlock mutants and determined that deadlock is required for germline maintenance, stability of mitotic spindles, localization of patterning determinants, oocyte growth and fusome biogenesis in males and females. Deadlock encodes a novel protein which colocalizes with the oocyte nucleus at midstages of oogenesis and with the centrosomes of early embryos. Our genetic and immunohistological experiments point to a role for Deadlock in microtubule function during oogenesis.  相似文献   

8.
Cytokinesis partitions a centrosome to each daughter cell at cell division that will duplicate and assemble a bipolar spindle in the subsequent M phase. Cytokinesis is incomplete in proliferating germ cells in Drosophila and cytoplasmic channels connect sibling germ cells. Although centrosomes are essential to male fertility, the molecular mechanism that retains centrosomes in parental germ cells is not known. Cortical cytoplasmic structures known as fusomes extend through ring canals and connect cells within the cyst. Fusome assembly in males requires function of hu-li tai-shao (hts), an adducin like protein found in fusomes and in the cortical membrane cytoskeleton of somatic cells. This work used immunological and cytological methods to place hts mutants in an allelic series. Male fertile hts mutants express hts protein and generate apparently normal or fragmented fusomes. A male sterile allele does not express hts protein or show fusome structures. Gonial cells in all hts mutants showed 2 centrosomes and mitotic spindles were bipolar. Yet, primary spermatocytes, with and without fusome structures, frequently contained too many or too few centrosomes. Although spindle structures were not found in spermatocytes without centrosomes, meiotic spermatocytes with centrosomes generated bipolar, monopolar, and multipolar spindles. Collectively, these results indicate that hts function is necessary for centrosome inheritance in spermatocytes as well as for male fertility.  相似文献   

9.
Drosophila oocyte differentiation is preceded by the formation of a polarised 16-cell cyst from a single progenitor stem cell as a result of four rounds of asymmetric mitosis followed by incomplete cytokinesis. We show that the Orbit/Mast microtubule-associated protein is required at several stages in the formation of such polarised 16-cell cysts. In wild-type cysts, the Orbit/Mast protein not only associates with the mitotic spindle and its poles, but also with the central spindle (spindle remnant), ring canal and fusome, suggesting it participates in interactions between these structures. In orbit mutants, the stem cells and their associated fusomes are eventually lost as Orbit/Mast protein is depleted. The mitotic spindles of those cystocytes that do divide are either diminutive or monopolar, and do not make contact with the fusome. Moreover, the spindle remnants and ring canals fail to differentiate correctly in such cells and the structure of fusome is compromised. The Orbit/Mast protein thus appears to facilitate multiple interactions of the fusome with mitotic spindles and ring canals. This ensures correct growth of the fusome into a branched asymmetrically distributed organelle that is pre-determinative of 16-cell cyst formation and oocyte fate specification. Finally the Orbit/Mast protein is required during mid-oogenesis for the organisation of the polarised microtubule network inside the 16-cell cyst that ensures oocyte differentiation. The localisation of CLIP-190 to such microtubules and to the fusome is dependent upon Orbit/Mast to which it is complexed.  相似文献   

10.
A feature of metazoan reproduction is the elimination of maternal centrosomes from the oocyte. In animals that form syncytial cysts during oogenesis, including Drosophila and human, all centrosomes within the cyst migrate to the oocyte where they are subsequently degenerated. The importance and the underlying mechanism of this event remain unclear. Here, we show that, during early Drosophila oogenesis, control of the Anaphase Promoting Complex/Cyclosome (APC/C), the ubiquitin ligase complex essential for cell cycle control, ensures proper transport of centrosomes into the oocyte through the regulation of Polo/Plk1 kinase, a critical regulator of the integrity and activity of the centrosome. We show that novel mutations in the APC/C-specific E2, Vihar/Ube2c, that affect its inhibitory regulation on APC/C cause precocious Polo degradation and impedes centrosome transport, through destabilization of centrosomes. The failure of centrosome migration correlates with weakened microtubule polarization in the cyst and allows ectopic microtubule nucleation in nurse cells, leading to the loss of oocyte identity. These results suggest a role for centrosome migration in oocyte fate maintenance through the concentration and confinement of microtubule nucleation activity into the oocyte. Considering the conserved roles of APC/C and Polo throughout the animal kingdom, our findings may be translated into other animals.  相似文献   

11.
The localization of oskar mRNA to the posterior of the Drosophila oocyte defines the site of assembly of the pole plasm, which contains the abdominal and germline determinants. oskar mRNA localization requires the polarization of the microtubule cytoskeleton, which depends on the recruitment of PAR-1 to the posterior cortex in response to a signal from the follicle cells, where it induces an enrichment of microtubule plus ends. Here, we show that overexpressed oskar mRNA localizes to the middle of the oocyte, as well as the posterior. This ectopic localization depends on the premature translation of Oskar protein, which recruits PAR-1 and microtubule-plus-end markers to the oocyte center instead of the posterior pole, indicating that Oskar regulates the polarity of the cytoskeleton. Oskar also plays a role in the normal polarization of the oocyte; mutants that disrupt oskar mRNA localization or translation strongly reduce the posterior recruitment of microtubule plus ends. Thus, oskar mRNA localization is required to stabilize and amplify microtubule polarity, generating a positive feedback loop in which Oskar recruits PAR-1 to the posterior to increase the microtubule cytoskeleton's polarization, which in turn directs the localization of more oskar mRNA.  相似文献   

12.
After its specification, the Drosophila oocyte undergoes a critical polarization event that involves a reorganization of the microtubules (MT) and relocalization of the determinant Orb within the oocyte. This polarization requires Par-1 kinase and the PDZ-containing Par-3 homolog, Bazooka (Baz). Par-1 has been observed on the fusome, which degenerates before the onset of oocyte polarization. How Par-1 acts to polarize the oocyte has been unclear. Here we show that Par-1 becomes restricted to the oocyte in a MT-dependent fashion after disappearance of the fusome. At the time of polarization, the kinase itself and the determinant BicaudalD (BicD) are relocalized from the anterior to the posterior of the oocyte. Par-1 and BicD are interdependent and require MT and the minus end-directed motor Dynein for their relocalization. We show that baz is required for Par-1 relocalization within the oocyte and that the distributions of Baz and Par-1 in the Drosophila oocyte are complementary and strikingly reminiscent of the two PAR proteins in the C. elegans embryo. We propose that, through the combined actions of the fusome, MT, and Baz, Par-1 is selectively enriched and localized within the oocyte, where, in conjunction with BicD, Egalitarian (Egl), and Dynein, it acts on the MT cytoskeleton to effect polarization.  相似文献   

13.
To study the role of the centrosome in microtubule organization in interphase cells, we developed a method for obtaining cytoplasts (cells lacking a nucleus) that did or did not contain centrosomes. After drug- induced microtubule depolymerization, cytoplasts with centrosomes made from sparsely plated cells reconstituted a microtubule array typical of normal cells. Under these conditions cytoplasts without centrosomes formed only a few scattered microtubules. This difference in degree of polymerization suggests that centrosomes affect not only the distribution but the amount of microtubules in cells. To our surprise, the extent of microtubules assembled increased with the cell density of the original culture. At confluent density, cytoplasts without centrosomes had many microtubules, equivalent to cytoplasts with centrosomes. The additional microtubules were arranged peripherally and differed from the centrosomal microtubules in their sensitivity to nocodazole. These and other results suggest that the centrosome stabilizes microtubules in the cell, perhaps by capping one end. Microtubules with greater sensitivity to nocodazole arise by virtue of change in the growth state of the cell and may represent free or uncapped polymers. These experiments suggest that the spatial arrangement of microtubules may change by shifting the total tubulin concentration or the critical concentration for assembly.  相似文献   

14.
15.
The centrosome of the slime mould Dictyostelium discoideum displays a morphology markedly different from centriolar centrosomes or yeast spindle pole bodies, while fulfilling the same conserved functions in the organization of the microtubule cytoskeleton. Recent advances suggest that the Dictyostelium centrosome may offer an interesting model system, usefully complementing other well-studied centrosome models. The establishment of an isolation procedure and the generation of a range of monoclonal antibodies have been achieved, which are important pre-requisites for biochemical investigation. Furthermore, the role of the centrosome in cell motility and centrosome duplication process have been investigated using cells with GFP-labelled centrosomes.  相似文献   

16.
Microtubule drugs, which block cell cycle progression through mitosis, have seen widespread use in cancer chemotherapies. Although microtubules are subject to regulation by signal transduction mechanisms, their pharmacological modulation has so far relied on compounds that bind to the tubulin subunit. A new microtubule pharmacophore, diphenyleneiodonium, causing disassembly of the microtubule cytoskeleton is described here. Although this synthetic compound does not affect the assembly state of purified microtubules, it profoundly suppresses microtubule assembly in vivo, causes paclitaxel-stabilized microtubules to cluster around the centrosomes, and selectively disassembles dynamic microtubules. Similar to other microtubule drugs, this new pharmacophore blocks mitotic spindle assembly and mitotic cell division.  相似文献   

17.
The cellular mechanisms used to generate sufficient microtubule polymer mass to drive the assembly and function of the mitotic spindle remain a matter of great interest. As the primary microtubule nucleating structures in somatic animal cells, centrosomes have been assumed to figure prominently in spindle assembly. At the onset of mitosis, centrosomes undergo a dramatic increase in size and microtubule nucleating capacity, termed maturation, which is likely a key event in mitotic spindle formation. Interestingly, however, spindles can still form in the absence of centrosomes calling into question the specific mitotic role of these organelles. Recent work has shown that the human centrosomal protein, Cep192, is required for both centrosome maturation and spindle assembly thus providing a molecular link between these two processes. In this article, we propose that Cep192 does so by forming a scaffolding on which proteins involved in microtubule nucleation are sequestered and become active in mitotic cells. Normally, this activity is largely confined to centrosomes but in their absence continues to function but is dispersed to other sites within the cell.  相似文献   

18.
Germline cysts containing 16 interconnected cells (cystocytes) are produced at an early stage of Drosophila oogenesis by progenitor cells known as cystoblasts that undergo four synchronous rounds of incomplete division. During cyst formation, a region of specialized, spectrin-rich cytoplasm called the fusome traverses the intercellular Connections (ring canals), linking individual cystocytes. Subsequently, 15 cystocytes begin to transport specific RNAs and other components into the remaining cell, the future oocyte. We used fusome-specific antibodies to characterize the early stages of cyst formation. During the first cystoblast division, a spherical mass of fusome material (the “spectrosome”) was associated with only one pole of the mitotic spindle, revealing that this division is asymmetric. During the subsequent three divisions, the growing fusome always associated with the pole of each mitotic spindle that remained in the mother cell, and only extended through the newly formed ring canals after each division was completed. These observations suggest that fusomes help establish a system of directional transport between cystocytes that underlies oocyte determination. © 1995 Wiley-Liss, Inc.  相似文献   

19.
The early embryonic divisions of Drosophila melanogaster are characterized by rapid, synchronized changes of the nuclei and surrounding cytoskeleton. We report evidence that these changes are carried out by two separately organized systems. DNA was sufficient to cause assembly of nuclear lamina and the formation of nuclear membrane with pore structures. Free centrosomes were correlated with the formation of microtubule, microfilament and spectrin networks in the absence of nuclei. In addition, we found that the morphology of the cytoskeleton associated with the free centrosomes cycled in response to the embryonic cell cycle cues. These observations suggest that the centrosomes may be responsible for the organization of this extensive cytoskeleton. The early divisions may therefore result from the independent cycling of two systems, the nucleus and the surrounding cytoskeleton, that respond separately to the mitotic cues in the embryo and function together to give the synchronized early divisions. The Drosophila embryo has an "intermediate" mitotic system in which the nuclear membrane does not break down completely during mitosis. We speculate that the principles of cytoskeleton organization in this system may be different from those of the Xenopus "open" mitotic system.  相似文献   

20.
The vast majority of animal cells contain canonical centrosomes as a main microtubule-organizing center defined by a central pair of centrioles. As a rare and striking exception to this rule, vertebrate oocytes loose their centrioles at an early step of oogenesis. At the end of oogenesis, centrosomes are eventually replaced by numerous acentriolar microtubule-organizing centers (MTOCs) that shape the spindle poles during meiotic divisions. The mechanisms involved in centrosome and acentriolar MTOCs metabolism in oocytes have not been elucidated yet. In addition, little is known about microtubule organization and its impact on intracellular architecture during the oocyte growth phase following centrosome disassembly. We have investigated this question in the mouse by coupling immunofluorescence and live-imaging approaches. We show that growing oocytes contain dispersed pericentriolar material, responsible for microtubule assembly and distribution all over the cell. The gradual enlargement of PCM foci eventually leads in competent oocytes to the formation of big perinuclear MTOCs and to the assembly of large microtubule asters emanating from the close vicinity of the nucleus. Upon meiosis resumption, perinuclear MTOCs spread around the nuclear envelope, which in parallel is remodelled before breaking-down, via a MT- and dynein-dependent mechanism. Only fully competent oocytes are able to perform this dramatic reorganization at NEBD. Therefore, the MTOC-MT reorganization that we describe is one of key feature of mouse oocyte competency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号