首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The types and subunit composition of cAMP-dependent protein kinases in soluble rat ovarian extracts were investigated. Results demonstrated that three peaks of cAMP-dependent kinase activity could be resolved using DEAE-cellulose chromatography. Based on the sedimentation of cAMP-dependent protein kinase and regulatory subunits using sucrose density gradient centrifugation, identification of 8-N3[32P]cAMP labeled RI and RII in DEAE-cellulose column and sucrose gradient fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Scatchard analysis of the cAMP-stimulated activation of the eluted peaks of kinase activity, the following conclusions were drawn regarding the composition of the three peaks of cAMP-dependent protein kinase activity: peak 1, eluting with less than or equal to 0.05 M potassium phosphate, consisted of the type I form of cAMP-dependent protein kinase; peak 2, eluting with 0.065-0.11 M potassium phosphate, consisted of free RI and a type II tetrameric holoenzyme; peak 3, eluting with 0.125 M potassium phosphate, consisted of an apparent RIIC trimer, followed by the elution with 0.15 M potassium phosphate of free RII. The regulatory subunits were confirmed as authentic RI and RII based upon their molecular weights and autophosphorylation characteristics. The more basic elution of the type II holoenzyme with free RI was not attributable to the ionic properties of the regulatory subunits, based upon the isoelectric points of photolabeled RI and RII and upon the elution location from DEAE-cellulose of RI and RII on dissociation from their respective holoenzymes by cAMP. This is the first report of a type II holoenzyme eluting in low salt fractions with free RI, and of the presence of an apparent RIIC trimer in a soluble tissue extract.  相似文献   

3.
The dynamics of distribution of the regulatory subunit of cAMP-dependent protein kinase II following protein injection into 3T3 cells was studied. The cAMP-binding component of protein kinase was injected into the cells, using erythrocyte ghosts. The conditions for protein encapsulation into erythrocyte ghosts were elaborated. The optimal detergent concentrations, incubation time and conditions of vesicular closure following protein injection were selected. The above method provides for a high (50-55%) yield of the erythrocyte ghost-encapsulated protein with a minimum loss of enzymatic activity. Fusion of erythrocyte ghosts containing the labeled protein with 3T3 cells was carried out. Using the cytoradiography technique, the dynamics of distribution of the radiolabeled regulatory subunit within the cell was analyzed. It was demonstrated that after the regulatory subunit has reached the cytoplasm, the protein is translocated into the nucleus and is pooled there is the vicinity of the nucleoli.  相似文献   

4.
K K Linask  R M Greene 《Life sciences》1989,45(20):1863-1868
Mammalian palatal ontogeny involves epithelial-mesenchymal interactions, cell differentiation, and cell movements. These events occur on days 12, 13, and 14 of gestation in the C57BL/6J mouse embryo. During this period intracellular cAMP levels and cAMP-dependent protein kinase (cAMP-dPK) levels in the palate transiently elevate. Cyclic AMP activates cAMP-dPK by binding primarily to two types of regulatory subunits of this enzyme, designated as RI and RII. To assess whether differential compartmentalization of the regulatory subunits occurs during palatal ontogeny, cytosolic, nuclear, and particulate fractions were prepared from day 12, 13, and 14 embryonic maxillary and palatal tissue. After photo-affinity labeling of each fraction with 8-azido [32P] cAMP, SDS-PAGE, and autoradiography, autoradiograms were analyzed densitometrically. The RI isoform predominated in the nuclear and particulate fractions on all three developmental days; whereas RII predominated in the cytosolic fractions. Thus, differential compartmentalization of cAMP-dPK may be a means by which cAMP dependent responses are regulated during palatogenesis.  相似文献   

5.
The mammalian cAMP-dependent protein kinases have regulatory (R) subunits that show substantial homology in amino acid sequence with the catabolite gene activator protein (CAP), a cAMP-dependent gene regulatory protein from Escherichia coli. Each R subunit has two in-tandem cAMP binding domains, and the structure of each of these domains has been modeled by analogy with the crystal structure of CAP. Both the type I and II regulatory subunits have been considered, so that four cAMP binding domains have been modeled. The binding of cAMP in general is analogous in all the structures and has been correlated with previous results based on photolabeling and binding of cAMP analogues. The model predicts that the first cAMP binding domain correlates with the previously defined fast dissociation site, which preferentially binds N6-substituted analogues of cAMP. The second domain corresponds to the slow dissociation site, which has a preference for C8-substituted analogues. The model also is consistent with cAMP binding in the syn conformation in both sites. Finally, this model has targeted specific regions that are likely to be involved in interdomain contacts. This includes contacts between the two cAMP binding domains as well as contacts with the amino-terminal region of the R subunit and with the catalytic subunit.  相似文献   

6.
We have used DNA-mediated gene transfer of genomic DNA to introduce into wild-type Chinese hamster ovary (CHO) cells a mutant gene that confers resistance to the growth inhibitory effect of cAMP. This dominant mutation in CHO cell line 10248 is responsible for an alteration in the RI subunit (RI*) of the type I cAMP-dependent protein kinase (Singh, T. J., Hochman, J., Verna, R., Chapman, M., Abraham, I., Pastan, I.H., and Gottesman, M.M. (1985) J. Biol. Chem. 260, 13927-13933). The transformant 11564 which was studied in detail, has the same characteristics as the original mutant 10248 including continued growth in medium containing 8-Br-cAMP, an increase in the Ka for cAMP activation of the kinase, a greatly reduced amount of type II protein kinase activity, an altered incorporation of the photoaffinity label 8-N3[32P]cAMP into the RI* subunit of PKI, and an absence of cAMP-dependent phosphorylation of a Mr = 52,000 protein in intact cells. In addition, analysis of the DNA of the transformant indicates the presence of an increased amount of DNA for the RI gene. These results are consistent with the transfer of a mutant gene for the RI* subunit of the cAMP-dependent protein kinase and its phenotypic expression in the transformant and also support the hypothesis that the mutation responsible for the defect in cell line 10248 is due to an alteration in the gene for RI.  相似文献   

7.
8.
The regulatory subunit of Type I cAMP-dependent protein kinase from rabbit skeletal muscle can bind [3H]cAMP to form the R-[3H]cAMP complex, and the slow phase of the enhanced exchange of free cAMP with [3H]cAMP from the R-[3H]cAMP complexes was studied under various conditions using the equilibrium isotope exchange technique. Results indicate that Mg-ATP and the catalytic subunit are absolutely required for the enhanced exchange reaction to occur, but phosphorylation of the regulatory subunit by Mg-ATP does not play a determining role in the slow rate of the dissociation/association of the Type I protein-kinase in the presence of cAMP and the catalytic subunit. We interpret the role of Mg-ATP as being one in which it may provide the structural attributes required for formation of a stabilized transient state of the cAMP-regulatory subunit-catalytic subunit ternary complex, an obligatory intermediate involved in the dissociation/association of Type I cAMP-dependent protein kinase.  相似文献   

9.
Retinoylation (retinoic acid acylation) is a post-translational modification of proteins occurring in a variety of eukaryotic cell lines. There are at least 20 retinoylated proteins in the human myeloid leukemia cell line HL60 (N. Takahashi and T.R. Breitman (1990) J. Biol. Chem. 265, 19, 158-19, 162). Here we found that some retinoylated proteins may be cAMP-binding proteins. Five proteins, covalently labeled by 8-azido-[32P]cAMP which specifically reacts with the regulatory subunits of cAMP-dependent protein kinase, comigrated on two-dimensional polyacrylamide gel electrophoresis with retinoylated proteins of Mr 37,000 (p37RA), 47,000 (p47RA), and 51,000 (p51RA) labeled by [3H]retinoic acid treatment of intact cells. Furthermore, p47RA coeluted on Mono Q anion exchange chromatography with the type I cAMP-dependent protein kinase holoenzyme and p51RA coeluted on Mono Q anion exchange chromatography with the type II cAMP-dependent protein kinase holoenzyme. An antiserum specific to RI, the cAMP-binding regulatory subunit of type I cAMP-dependent protein kinase, immunoprecipitated p47RA. An antiserum specific to RII, the cAMP-binding regulatory subunit of type II cAMP-dependent protein kinase, immunoprecipitated p51RA. These results indicate that both the RI and the RII regulatory subunits of cAMP-dependent protein kinase are retinoylated. Thus, an early event in RA-induced differentiation of HL60 cells may be the retinoylation of subpopulations of both RI and RII.  相似文献   

10.
Two-dimensional polyacrylamide gel electrophoresis is used to visualize the regulatory subunit of cAMP-dependent protein kinase from cultured S49 mouse lymphoma cells and to demonstrate its in vivo phosphorylation. Regulatory subunits from mutant cells with altered kinases exhibit at least two patterns of charge shifts consistent with substitutions of single amino acids. The direct demonstration of structural alteration of this protein provides strong evidence for structural gene mutation in this cultured cell system. While mutant and wild-type gene products co-exist in the mutant cells, there is apparently preferential expression and phosphorylation of mutant subunit in these heterozygotes.  相似文献   

11.
A method is suggested for obtaining a catalytic subunit of cAMP-dependent protein kinase from the cattle myocardium. The specific activity of protein kinase is 0.5 mumol 32P per 1 mg of the enzyme. The method is based on the difference of protein kinase in the subunit and choloenzyme charges, it embraces the stages of homogenization, ultracentrifugation and biospecific elution on anion exchanger of DEAE-Sepharose-CL-6B using 10(-4) M cAMP in the stationary variant.  相似文献   

12.
In filamentous fungi, growth polarity (i.e. hyphal extension) and formation of septa require polarized deposition of new cell wall material. To explore this process, we analyzed a conditional Neurospora crassa mutant, mcb, which showed a complete loss of growth polarity when incubated at the restrictive temperature. Cloning and DNA sequence analysis of the mcb gene revealed that it encodes a regulatory subunit of cAMP-dependent protein kinase (PKA). Unexpectedly, the mcb mutant still formed septa when grown at the restrictive temperature, indicating that polarized deposition of wall material during septation is a process that is, at least in part, independent of polarized deposition during hyphal tip extension. However, septa formed in the mcb mutant growing at the restrictive temperature are mislocalized. Both polarized growth and septation are actin-dependent processes, and a concentration of actin patches is observed at growing hyphal tips and sites where septa are being formed. In the mcb mutant growing at the restrictive temperature, actin patches are uniformly distributed over the cell cortex; however, actin patches are still concentrated at sites of septation. Our results suggest that the PKA pathway regulates hyphal growth polarity, possibly through organizing actin patches at the cell cortex.  相似文献   

13.
Mammalian tissues and cell lines express two major types of cAMP-dependent protein kinase, PKA-I and PKA-II, which can be distinguished at the molecular level by the presence of either type I or type II regulatory subunits in the holoenzyme. An expression vector for the mouse type II regulatory subunit (RII alpha) was transfected into ras-transformed NIH3T3 (R3T3) cells, which contain approximately equal amounts of both holoenzymes, PKA-I and PKA-II. In RII alpha-overexpressing R3T3 cells, PKA-II levels were increased, and the level of PKA-I declined. The decrease in PKA-I was dependent on the amount of RII alpha expressed, and at high levels of RII alpha expression, PKA-I was completely eliminated. In contrast, overexpression of the type I regulatory subunit (RI alpha) did not alter PKA isozyme levels. We propose that competition between RII alpha and RI alpha for a limited pool of catalytic subunit results in preferential assembly of PKA-II and that significant amounts of PKA-I are formed only if catalytic subunit is present in excess of the RII alpha subunit. The PKA-I isozyme, which is absent in untransformed 3T3 cells, is not essential for the transformed phenotype of R3T3 cells. RII alpha-overexpressing R3T3 cells that are devoid of PKA-I continued to exhibit a transformed phenotype including anchorage-independent growth. Overexpression of RII alpha provides a genetic approach that may prove useful in demonstrating specific functions for the two PKA isozymes in cAMP-dependent signal transduction pathways.  相似文献   

14.
We have examined the effect of the protein kinase C activator, TPA, on mRNA levels for subunits of cAMP-dependent protein kinases in the human colonic cancer cell line HT-29, subline m2. Messenger RNA for the regulatory subunit, RI alpha, of cAMP-dependent protein kinases was shown to be present and regulated by TPA. Other mRNAs for subunits of cAMP-dependent protein kinases (RI beta, RII alpha, RII beta, C alpha, C beta) were also present in these cells, but revealed no or only minor changes upon TPA stimulation. When HT-29 cells were cultured in the presence of 10 nM TPA for various time periods, a biphasic response was observed in RI alpha mRNA levels with a maximal increase (approximately 4 fold) after 24 hours. TPA stimulated RI alpha mRNA increased in a concentration-dependent manner and maximal response (4-8 fold) was seen at 3-10 nM. The TPA-induced increase in RI alpha mRNA was not obtained when cells were incubated with TPA together with the protein kinase C inhibitors, staurosporine or H7. The cAMP-analog 8-CPTcAMP alone induced RI alpha mRNA levels 50% more than TPA. Combined treatment with TPA (10 nM) and 8-CPTcAMP (0.1 mM) gave an increase in RI alpha mRNA similar to TPA. These results demonstrate an interaction between the protein kinase C pathway and mRNA levels for the RI alpha subunit of cAMP-dependent protein kinases in HT-29 cells.  相似文献   

15.
An expression vector has been constructed for the type I regulatory subunit of cAMP-dependent protein kinase. A cDNA clone for the bovine RI-subunit has been inserted into pUC7. When Escherichia coli JM105 was transformed with this plasmid, R-subunit was expressed in amounts that approached 4 mg/liter. The expressed protein was visualized in total cell extracts by photolabeling with 8-azidoadenosine 3':5'-mono[32P]phosphate following transfer from sodium dodecyl sulfate-polyacrylamide gels to nitrocellulose. Expression of R-subunit was independent of isopropyl-beta-D-thiogalactopyranoside. R-subunit accumulated in large amounts only in the stationary phase of growth, and the addition of isopropyl-beta-D-thiogalactopyranoside during the log phase of growth actually blocked the accumulation of R-subunit. Maximum expression (20 mg/liter) was achieved when E. coli 222 was transformed with the RI-containing plasmid. E. coli 222 is a strain that contains two mutations; it is cya- and also has a mutation in the catabolite gene activator protein (crp) that enables the protein to bind to DNA in the absence of cAMP. The expressed RI-subunit was a soluble, dimeric protein, and no significant proteolysis was apparent in the cell extract. The purified RI-subunit bound 2 mol of cAMP/mol of R monomer, reassociated with C-subunit to form holoenzyme, and migrated as a dimer on sodium dodecyl sulfate-polyacrylamide gels in the absence of reducing agents. The expressed protein was also susceptible to limited proteolysis, yielding a monomeric cAMP-binding fragment having a molecular weight of 35,000. In all of these properties, the expressed protein was indistinguishable from RI purified from bovine tissue even though the R-subunit expressed in E. coli represents a fusion protein that contains 10 additional amino acids at the amino terminus that are provided by the lac Z' gene of the vector. This NH2-terminal sequence was confirmed by amino acid sequencing.  相似文献   

16.
17.
Experiments on the introduction of the regulatory subunit of cAMP-dependent protein kinase type II (RII) into NIH 3T3 cells clearly demonstrated its translocation into the nucleus. The labelled protein was incorporated into erythrocyte ghosts and their fusion with the cells was carried out. The dynamics of distribution of the labelled RII in NIH 3T3 cells was studied by the method of historadiography. It was found that during the next few hours after its penetration into the cytoplasm, the protein translocates into the nucleus and concentrates in the immediate proximity to the nucleoli.  相似文献   

18.
Two isoforms of the regulatory subunit (R) of cAMP-dependent protein kinase (PKA), named R(myt1) and R(myt2), had been purified in our laboratory from two different tissues of the sea mussel Mytilus galloprovincialis. In this paper, we report the sequences of several peptides obtained from tryptic digestion of R(myt1). As a whole, these sequences showed high homology with regions of type I R subunits from invertebrate and also from mammalian sources, but homology with those of fungal and type II R subunits was much lower, which indicates that R(myt1) can be considered as a type I R isoform. This conclusion is also supported by the following biochemical properties: (1) R(myt1) was proved to have interchain disulfide bonds stabilizing its dimeric structure; (2) it failed to be phosphorylated by the catalytic (C) subunit purified from mussel; (3) it has a higher pI value than that of the R(myt2) isoform; and (4) it showed cross-reactivity with mammalian anti-RIbeta antibody.  相似文献   

19.
Two forms of the regulatory subunit of the type II cAMP-dependent protein kinase (RII55 and RII52) were identified from bovine heart by gel electrophoretic behaviour. After autophosphorylation the RII55 isoform migrated more slowly (RII55/57) while the migration of RII52 isoform did not shift. Both isoforms showed different affinity for cAMP. The RII55/57 isoform was eluted from a cAMP-agarose column at 10 mM cAMP at low ionic strenght whereas the RII52 isoform required cAMP, plus 2 M NaCl. Partial proteolysis, using trypsin or formic acid, of autophosphorylated regulatory subunit isoforms resulted in different cleavage pattern as determined by peptide mapping. However, the V8125I-peptides patterns of both isoforms are quite similar.Incubation of partially purified holoenzyme with 10 nM [-32P]ATP (low ATP concentration) yielded a single band of Mr = 57,000 which corresponds to the RII55/57 isoform. The incubation, however, at 20 µM [-32P]ATP yielded two phosphobands corresponding to both RII55/57 and RII52 isoforms. The phosphorylation of RII52 took place with a lower efficiency and was more sensitive to the cAMP than the corresponding phosphorylation of the RII55/57.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号