首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkaline phosphatase and 5'-nucleotidase activities were analysed cytophotometrically in cryostat sections of female rat liver after partial hepatectomy. Alkaline phosphatase activity increased rapidly after operation up to a maximum seven-fold rise at 24 h in comparison with sham operated or control rats. There was no indication of preferential localization of alkaline phosphatase activity in either periportal or pericentral areas at any time point in control rats, sham operated rats or hepatectomized rats. Microscopical observation revealed that (a) all alkaline phosphatase activity was present at the bile canalicular surface of hepatocytes and (b) hepatocytes in mitosis did not show any increase in activity. These findings indicate that the high alkaline phosphatase activity after partial hepatectomy is not involved primarily in proliferation processes because cell division mainly takes place periportally. It may be needed for enhanced bile secretion by conversion of intracellular phosphorylcholine into choline which can be transported into the bile. The intracellular phosphorylcholine level is high after operation due to changes in phospholipid metabolism. 5'-Nucleotidase appeared to be three times higher pericentrally than periportally under normal conditions. Partial hepatectomy caused a 40 per cent decrease in activity in pericentral areas and only a small decrease periportally. It has been suggested that 5'-nucleotidase plays a role in breakdown of messenger RNA and its activity in control liver could be considerably lower periportally because plasma protein synthesis mainly takes place in this area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The diurnal variations of the glycogen content and of glycogen phosphorylase activity in periportal and pericentral areas of rat liver parenchyma have been analyzed in periodic acid Schiff (PAS)-stained cryostat sections using quantitative microdensitometry. Glycogen content and phosphorylase activity were always higher in periportal areas than in pericentral areas throughout the daily cycle. The glycogen content was highest at the end of the active period during darkness and lowest at the end of the resting period. Phosphorylase activity appeared to be inversely correlated with the glycogen content in both areas. It is concluded that the glycogen content is regulated by phosphorylase activity, which may be due to local cAMP concentration.  相似文献   

3.
The effects of ischemia in vitro for 0-60 min at 37 degrees C on glycogen phosphorylase activity in rat liver have been studied under different feeding conditions. Glycogen phosphorylase activity was demonstrated with a recently developed quantitative histochemical method using a semipermeable membrane and the PAS-reaction. The cytophotometrically measured glycogen phosphorylase activity in livers from 24 h-fasted rats was approximately five times the activity in livers from normally fed rats. The activity in periportal areas was about 1.5 times higher than the activity in pericentral areas in livers from starved rats, but more or less evenly distributed in livers from fed rats. Enzyme activity in pericentral areas of livers from 24 h-fasted rats started to decrease after 20 min of ischemia. After 50-60 min of ischemia, the activity was decreased to approximately 25% of the control activity. Livers from normally fed rats showed unchanged activity in periportal and pericentral areas after 10-60 min of ischemia. It has been assumed that the activation of the enzyme was disturbed by ischemia, possibly as a consequence of plasma membrane damage.  相似文献   

4.
Summary Glycogen phosphorylase (EC 2.4.1.1) has been demonstrated in sections of liver from rats starved for 24 h. The method is based on the measurement of the amount of glycogen formed after incubation in a gelled medium containing glucose 1-phosphate as substrate, using the semipermeable membrane technique. Glycogen was demonstrated with the periodic acid-Schiff (PAS) reaction.Phosphorylase activity appeared to be highest in periportal areas. The optimum substrate concentration for revealing activity of the enzyme was 60–120mm. After incubation in the absence of substrate, the staining intensity, as measured cytophotometrically as the mean integrated absorbance at 560 nm, was similar to that of an unincubated section.p-Chloromercuribenzoate, a non-specific inhibitor of glycogen phosphorylase activity, reduced the formation of final reaction product attributable to phosphorylase activity completely. The Michaelis constants (K m ) of the enzyme in periportal and pericentral areas differed. This was probably due to the presence of thea form only in periportal areas and of thea andb forms in pericentral areas. The mean integrated absorbances in both the periportal and pericentral areas increased linearly with incubation time (4–16 min). A linear relationship was also found with section thickness (4–10 µm). The total activity of glycogen phosphorylase in the periportal areas was double the pericentral activity.It is concluded that the semipermeable membrane technique, combined with the PAS reaction for glycogen, can be used as a valid method for the demonstration and quantification of glycogen phosphorylase activity in livers from starved rats.  相似文献   

5.
Summary The diurnal variation of 5-nucleotidase activity in periportal and pericentral areas of rat liver parenchyma has been determined with quantitative histochemical means. 5-Nucleotidase activity was estimated using microdensitometry in cryostat sections after being incubated with a medium according to Wachstein and Meisel (1957). It appeared that 5-nucleotidase activity was significantly higher in pericentral areas than in periportal areas throughout the daily cycle and showed a maximum at the end of the light period. It was concluded that 5-nucleotidase activity may be related with the capacity to diminish messenger RNA resulting in protein breakdown.  相似文献   

6.
A simple method which avoids the use of perfusion with calcium free buffer, hydrolytic enzymes and detergents has been developed to obtain fresh hepatocytes from periportal and pericentral regions of the liver lobule. Cylindrical plugs (200 x 500 microns) of periportal and pericentral areas of the rat liver lobule weighing about 1 mg were collected with a micropunch from fresh or perfused liver. Ninety percent of cells were intact as assessed from trypan blue staining. Glutamine synthetase activity was detected predominantly (ca. 85%) in plugs isolated from pericentral regions indicating that this method allows selective harvesting of pure sublobular zones of the liver lobule. Rates of oxygen uptake measured at 25 degrees C by plugs from livers perfused in the anterograde direction were 56 +/- 5 and 33 +/- 7 mumol/g/h by periportal and pericentral plugs, respectively, values similar to data obtained from the intact organ. This method provides new opportunities to study the regulation of basic metabolic processes in cells from sublobular areas under nearly physiological conditions.  相似文献   

7.
The reaction velocity of glucose-6-phosphate dehydrogenase (G6PDH) and phosphogluconate dehydrogenase (PGDH) was quantified with a cytophotometer by continuous monitoring of the reaction product as it was formed in liver cryostat sections from normal, young mature female rats at 37 degrees C. Control incubations were performed in media lacking both substrate and coenzyme for G6PDH activity and lacking substrate for PGDH activity. All reaction rates were non-linear but test minus control reactions showed linearity with incubation time up to 5 min using Nitro BT as final electron acceptor. End point measurements after incubation for 5 min at 37 degrees C revealed that the highest specific activity of G6PDH was present in the intermediate area (Vmax = 7.79 +/- 1.76 mumol H2 cm-3 min-1) and of PGDH in the pericentral and intermediate areas (Vmax = 17.19 +/- 1.73 mumol H2 cm-3 min-1). In periportal and pericentral areas, Vmax values for G6PDH activity were 4.48 +/- 1.03 mumol H2 cm-3 min-1) and 3.47 +/- 0.78 mumol H2 cm-3 min-1), respectively. PGDH activity in periportal areas showed a Vmax of 10.84 +/- 0.33 mumol H2 cm3 min-1. Variation of the substrate concentration for G6PDH activity yielded similar KM values of 0.17 +/- 0.07 mM, 0.15 +/- 0.13 mM and 0.22 +/- 0.11 mM in periportal, pericentral and intermediate areas, respectively. KM values of 0.87 +/- 0.12 mM in periportal and of 1.36 +/- 0.10 mM in pericentral and intermediate areas were found for PGDH activity. The significant difference between KM values for PGDH in areas within the acinus support the hypothesis that PGDH is present in the cytoplasmic matrix and in the microsomes. A discrepancy existed between KM and Vmax values determined in cytochemical assays using cryostat sections and values calculated from biochemical assays using diluted homogenates. In cytochemical assays, the natural microenvironment for enzymes is kept for the demonstration of their activity and thus may give more accurate information on enzyme reactions as they take place in vivo.  相似文献   

8.
Gluconeogenesis predominates in periportal regions of the liver lobule   总被引:2,自引:0,他引:2  
Rates of gluconeogenesis from lactate were calculated in periportal and pericentral regions of the liver lobule in perfused rat livers from increases in O2 uptake due to lactate. When lactate (0.1-2.0 mM) was infused into livers from fasted rats perfused in either anterograde or the retrograde direction, a good correlation (r = 0.97) between rates of glucose production and extra O2 uptake by the liver was observed as expected. Rates of oxygen uptake were determined subsequently in periportal and pericentral regions of the liver lobule by placing miniature oxygen electrodes on the liver surface and measuring the local change in oxygen concentration when the flow was stopped. Basal rates of oxygen uptake of 142 +/- 11 and 60 +/- 4 mumol X g-1 X h-1 were calculated for periportal and pericentral regions, respectively. Infusion of 2 mM lactate increased oxygen uptake by 71 mumol X g-1 X h-1 in periportal regions and by 29 mumol X g-1 X h-1 in pericentral areas of the liver lobule. Since the stoichiometry between glucose production and extra oxygen uptake is well-established, rates of glucose production in periportal and pericentral regions of the liver lobule were calculated from local changes in rates of oxygen uptake for the first time. Maximal rates of glucose production from lactate (2 mM) were 60 +/- 7 and 25 +/- 4 mumol X g-1 X h-1 in periportal and pericentral zones of the liver lobule, respectively. The lactate concentrations required for half-maximal glucose synthesis were similar (0.4-0.5 mM) in both regions of the liver lobule in the presence or absence of epinephrine (0.1 microM). In the presence of epinephrine, maximal rates of glucose production from lactate were 79 +/- 5 and 59 +/- 3 mumol X g-1 X h-1 in periportal and pericentral regions, respectively. Thus, gluconeogenesis from lactate predominates in periportal areas of the liver lobule during perfusion in the anterograde direction; however, the stimulation by added epinephrine was greatest in pericentral areas. Differences in local rates of glucose synthesis may be due to ATP availability, as a good correlation between basal rates of O2 uptake and rates of gluconeogenesis were observed in both regions of the liver lobule in the presence and absence of epinephrine. In marked contrast, when livers were perfused in the retrograde direction, glucose production was 28 +/- 5 mumol X g-1 X h-1 in periportal areas and 74 +/- 6 mumol X g-1 X h-1 in pericentral regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The histochemical method for the demonstration of D-amino acid oxidase activity in rat liver, based on the use of cerium ions and the diaminobenzidine-cobalt-hydrogen peroxide procedure, was improved by the application of unfixed cryostat sections and a semipermeable membrane interposed between section and gelled incubation medium. The amount of final reaction product precipitated in a granular form was about four times higher with this technique in comparison with conventional procedures using fixed sections and aqueous incubation media. The specificity of the reaction was proven by the 70% reduction of the amount of final reaction product when incubating in the presence of substrate and D,L-beta-hydroxybutyrate, a specific inhibitor of D-amino acid oxidase activity. Cytophotometric analysis of liver sections revealed that the specific test minus control reaction was linear with incubation time and section thickness. The Km value of the enzyme of 10.3 +/- 2.7 mM, as determined in periportal areas, is about five times the value found with biochemical methods in liver cell homogenates. The enzyme activity in periportal areas is about five times the activity in pericentral areas. Fasting (24 and 48 hr) induced a significant decrease in D-amino acid activity in periportal and pericentral areas. The possible physiological role of the enzyme in liver is discussed.  相似文献   

10.
A method has been devised to quantitate rates of ketogenesis (acetoacetate + beta-hydroxybutyrate production) in discrete regions of the liver lobule based on changes in NADH fluorescence. In perfused livers from fasted rats, ketogenesis was inhibited nearly completely with either 2-bromoctanoate (600 microM) or 2-tetradecylglycidic acid (25 microM). During inhibition of ketogenesis, a linear relationship (r = 0.90) was observed between decreases in NADH fluorescence detected from the liver surface and decreases in ketone body production. NADH fluorescence was monitored subsequently from individual regions of the liver lobule by placing microlight guides on periportal and pericentral regions of the liver lobule visible on the liver surface. Rates of ketogenesis in sublobular regions were calculated from regional decreases in NADH fluorescence and changes in the rate of ketone body formation by the whole liver during infusion of inhibitors. In the presence of bromoctanoate, ketogenesis was reduced 80% and local rates of ketogenesis were decreased 31 +/- 4 mumol/g/h in periportal areas and 28 +/- 3 mumol/g/h in pericentral regions. Similar results were observed with tetradecylglycidic acid. Therefore, it was concluded that submaximal rates of ketogenesis from endogenous, mainly long-chain fatty acids are nearly equal in periportal and pericentral regions of the liver lobule in liver from fasted rats. Rates of ketogenesis and NADH fluorescence were strongly correlated during fatty acid infusion. Infusion of 250 microM oleate increased NADH fluorescence maximally by 8 +/- 1% over basal values in periportal regions and 17 +/- 4% in pericentral areas. Local rates of ketogenesis, calculated from these changes in fluorescence, increased 35 +/- 6 mumol/g/h in periportal areas and 55 +/- 5 mumol/g/h in pericentral regions. Thus, oleate stimulated ketogenesis nearly 60% more in pericentral than in periportal regions of the liver lobule.  相似文献   

11.
Cytochrome P-450IIE1 is induced by a variety of agents, including acetone, ethanol and pyrazole. Recent studies employing immunohistochemical methods have shown that P-450IIE1 was expressed primarily in the pericentral zone of the liver. In order to evaluate whether catalytic activity of P-450IIE1 is preferentially localized in the pericentral zone of the liver acinus, the oxidation of aniline and p-nitrophenol, two effective substrates for P-450IIE1, by periportal and pericentral hepatocytes isolated from pyrazole-treated rats was determined. Periportal and pericentral hepatocytes were prepared by a digitonin-collagenase procedure; the marker enzymes glutamine synthetase and gamma-glutamyl transpeptidase indicated reasonable separation of the two cell populations. Viability, yield and total cytochrome P-450 content were similar for the periportal and pericentral hepatocytes. Pericentral hepatocytes oxidized aniline and p-nitrophenol at rates that were 2-4-fold greater than periportal hepatocytes under a variety of conditions. Carbon monoxide inhibited the oxidation of the substrates with both preparations and abolished the increased oxidation found with the pericentral hepatocytes. Pyrazole or 4-methylpyrazole, added in vitro, effectively inhibited the oxidation of aniline and p-nitrophenol and prevented the augmented rate of oxidation by the pericentral hepatocytes. Western blots carried out using isolated microsomes revealed a more than 2-fold increase in immunochemical staining with microsomes isolated from the pericentral hepatocytes, which correlated to the 2-4-fold increase in the rate of oxidation of aniline or p-nitrophenol by the pericentral hepatocytes. These results suggest that functional catalytic activity of cytochrome P-450IIE1 is preferentially localized in the pericentral zone of the liver acinus, and that most of the induction by pyrazole of P-450IIE1 appears to occur within the pericentral zone.  相似文献   

12.
Indirect evidence for a microtubule-dependent vesicular hepatocellular transport of bile acids has accumulated. Since inhibition of this transport by colchicine can be achieved only at high but not at low bile acid infusion rates we were wondering whether this transport pathway shows a hepatic zonation or not. To answer this question we perfused isolated rat livers antegradely or retrogradely, respectively, with unlabeled and labeled taurocholate or taurodeoxycholate. Inhibition of microtubule-dependent bile acid transport was aimed at co-infusion of colchicine. Periportal cells eliminated the likewise hydrophobic taurodeoxycholate as fast as the more hydrophilic taurocholate. In contrast, pericentral cells excreted taurodeoxycholate much slower than taurocholate. Colchicine did not change the biliary taurocholate excretion profile in periportal and pericentral cells. However, colchicine reduced significantly taurodeoxycholate excretion in pericentral but not in periportal cells. It is concluded that a microtubule-dependent vesicular, colchicine-sensitive transport pathway seems to be involved in the translocation of taurodeoxycholate in pericentral but not in periportal cells. Since such a vesicular bile acid transport is regarded to be much slower than transcellular transport by diffusion, this observation may explain the much slower excretion of hydrophobic bile acids like taurodeoxycholate in pericentral than in periportal cells under physiological conditions.  相似文献   

13.
Glucose-6-phosphatase activity has been determined in periportal and pericentral zones of the rat liver lobule using a quantitative histochemical method. The study was performed on unfixed cryostat sections of livers from fasted and fed female and male rats. Highest activity was found in periportal zones, and starvation caused a 2-3-fold increase of glucose-6-phosphatase activity in periportal and pericentral zones of both sexes. Unexpectedly, KM values were also significantly different in periportal and pericentral zones and were found to increase linearly with Vmax values, irrespective of sex and feeding condition. Because the cryofixation procedure was shown to permeabilize the biomembranes in the tissue sections, it can be concluded that the rise in KM and Vmax values has to be attributed to the catalytic unit of the glucose-6-phosphatase system. It is suggested that the enzyme exists in a high affinity configuration at low enzyme concentrations but that at high enzyme concentrations a hysteretic mechanism, as proposed by Berteloot et al. (Berteloot, A., Vidal, H., and Van de Werve, G. (1991) J. Biol. Chem. 266, 5497-5507), transforms the enzyme from a high to a low affinity configuration. The present study indicates that the concept of functional heterogeneity of liver parenchyma may be more complex than thus far assumed.  相似文献   

14.
The effect of starvation and glucose addition on glucuronidation was assessed in sublobular regions of the lobule in perfused livers from phenobarbital-treated rats. Fibre-optic micro-light guides were placed on periportal and pericentral areas on the surface of livers to monitor the fluorescence (excitation 366 nm, emission 450 nm) of free 7-hydroxycoumarin from the tissue surface. After infusion of 7-hydroxycoumarin (80 microM) under normoxic conditions, steady-state increases in fluorescence were reached in 6-8 min in both regions. Subsequently, the formation of non-fluorescent 7-hydroxycoumarin glucuronide was inhibited completely by perfusion with N2-saturated perfusate containing 20 mM-ethanol. The difference in fluorescence between anoxic and normoxic perfusions was due to glucuronidation under these conditions. In livers from fed rats, rates of glucuronidation in periportal and pericentral regions of the liver lobule were 8 and 19 mumol/h per g, respectively. In contrast, rates of glucuronidation were 3 and 9 mumol/h per g, respectively, in periportal and pericentral regions of livers from starved rats. Infusion of glucose (20 mM) had no effect on rates of glucuronidation in livers from fed rats; however, glucose increased rates of glucuronidation rapidly (half-time, t0.5 = 1.5 min) in periportal and pericentral regions to 7 and 17 mumol/h per g, respectively in livers from starved rats. These results indicate that the rapid synthesis of the cofactor UDP-glucuronic acid derived from glucose is an important rate-determinant for glucuronidation of 7-hydroxycoumarin in both periportal and pericentral regions of livers from starved rats.  相似文献   

15.
Pyruvate kinase and phosphoenolpyruvate carboxykinase activities were determined in microdissected freeze-dried liver cells from the periportal and pericentral area of the liver lobule. Pyruvate kinase activity was measured by a microfluorimetric procedure adapted to 20-200 ng tissue dry weight. In livers from fed rats, its activity was twice as high in the central zone as in the periportal cells; starvation reduced this gradient by decreasing central activities. Phosphoenolpyruvate carboxykinase activity was measured by a microradiochemical technique in 100-300 ng tissue dry weight. In livers from fed rats, this enzyme was nearly 3 times more active in the periportal cells than in the central area. Starvation increased this enzyme in both zones with a more pronounced change in the central cells. The results indicate a heterogeneous distribution of enzymes of carbohydrate metabolism in the liver lobule. Gluconegenesis seems to be localized preferentially in periportal hepatocytes, whereas the glycolytic enzyme was found to be more active in cells surrounding the pericentral liver cells.  相似文献   

16.
Gluconeogenesis from fructose was studied in periportal and pericentral regions of the liver lobule in perfused livers from fasted, phenobarbital-treated rats. When fructose was infused in increasing concentrations from 0.25 to 4 mM, corresponding stepwise increases in glucose formation by the perfused liver were observed as expected. Rates of glucose and lactate production from 4 mM fructose were around 100 and 75 mumol/g/h, respectively. Rates of fructose uptake were around 190 mumol/g/h when 4 mM fructose was infused. 3-Mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, decreased glucose formation from fructose maximally by 20% suggesting that a fraction of the lactate formed from fructose is used for glucose synthesis. A good correlation (r = 0.92) between extra oxygen consumed and glucose produced from fructose was observed. At low fructose concentrations (less than 0.5 mM), the extra oxygen uptake was much greater than could be accounted for by glucose synthesis possibly reflecting fructose 1-phosphate accumulation. Furthermore, fructose diminished ATP/ADP ratios from about 4.0 to 2.0 in periportal and pericentral regions of the liver lobule indicating that the initial phosphorylation of fructose via fructokinase occurs in both regions of the liver lobule. Basal rates of oxygen uptake measured with miniature oxygen electrodes were 2- to 3-fold higher in periportal than in pericentral regions of the liver lobule during perfusions in the anterograde direction. Infusion of fructose increased oxygen uptake by 65 mumol/g/h in periportal areas but had no effect in pericentral regions of the liver lobule indicating higher local rates of gluconeogenesis in hepatocytes located around the portal vein. When perfusion was in the retrograde direction, however, glucose was synthesized nearly exclusively from fructose in upstream, pericentral regions. Thus, gluconeogenesis from fructose is confined to oxygen-rich upstream regions of the liver lobule in the perfused liver.  相似文献   

17.
Rates of urea synthesis were determined in periportal and pericentral regions of the liver lobule in perfused liver from fed, phenobarbital-treated rats by measuring the extra O2 consumed upon infusion of NH4Cl with miniature O2 electrodes and from decreases in NADPH fluorescence detected with micro-light-guides. Urea synthesis by the perfused rat liver supplemented with lactate (5 mM), ornithine (2 mM) and methionine sulfoximine (0.15 mM), an inhibitor of glutamine synthetase, was stimulated by stepwise infusion of NH4Cl at doses ranging from 0.24 mM to 3.0 mM. A good correlation (r = 0.92) between decreases in NADPH fluorescence and urea production was observed when the NH4Cl concentration was increased. Sublobular rates of O2 uptake were determined by placing miniature oxygen electrodes on periportal or pericentral regions of the lobule on the liver surface, stopping the flow and measuring decreases in oxygen tension. From such measurements local rates of O2 uptake were calculated in the presence and absence of NH4Cl and local rates of urea synthesis were calculated from the extra O2 consumed in the presence of NH4Cl and the stoichiometry between O2 uptake and urea formation. Rates of urea synthesis were also estimated from the fractional decrease in NADPH fluorescence, caused by NH4Cl infusion in each region, measured with micro-light-guides and the rate of urea synthesis by the whole organ. When perfusion was in the anterograde direction, maximal rates of urea synthesis, calculated from changes in fluorescence, were 177 +/- 31 mumol g-1 h-1 and 61 +/- 24 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, however, rates were 76 +/- 23 mumol g-1 h-1 in periportal areas and 152 +/- 19 mumol g-1 h-1 in pericentral regions. During perfusion in the anterograde direction, urea synthesis, calculated by changes in O2 uptake, was 307 +/- 76 mumol g-1 h-1 and 72 +/- 34 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, urea was synthesized at rates of 54 +/- 17 mumol g-1 h-1 and 387 +/- 99 mumol g-1 h-1 in periportal and pericentral regions, respectively. Thus, maximal rates of urea synthesis were dependent upon the direction of perfusion. In addition, rates of urea synthesis were elevated dramatically in periportal regions when the flow rate per gram liver was increased (e.g. 307 versus 177 mumol g-1 h-1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The distribution pattern and the number of tumor cells arrested in the liver were studied in mouse livers. Mice were perfused intravascularly with a suspension of B16F10 melanoma cells. The animals were sacrificed at 0, 1, 5, and 20 min after tumor cell perfusion. The pattern of tumor cell distribution was studied by morphological methods, and by a combined method of fluorescent-tumor cell labelling and histochemical succinate dehydrogenase activity on frozen sections, in order to define the localization of tumor cells arrested in the liver lobule. The results show that the tumor cells have an exclusive distribution in the periportal regions of the liver lobule (identified as the high succinate dehydrogenase activity areas), and that the cells are not arrested in the pericentral regions (identified as the low succinate dehydrogenase activity areas). In addition, indomethacin treatment (2 mg/kg/day) induced an increase in the number of melanoma cells arrested in the liver, but a different distribution with respect to controls was not observed. These results show that periportal regions of the liver lobule constitute a particular domain in which the B16F10 melanoma cells present a special retention ability that can be modulated by indomethacin treatment.  相似文献   

19.
 Glucose-6-phosphatase (G6Pase) activity has been determined in periportal and pericentral areas of the liver of normal male rats. Measurements were performed on unfixed cryostat sections mounted on semipermeable membranes. In the present study, the oxidized primary reaction product of a cerium-based histochemical method [Ce(IV)perhydroxyphosphate] instead of the final reaction product after a second-step incubation was measured. For quantification of the amount of Ce(IV)perhydroxyphosphate formed the digital image analyzing system Quantimet 500+ was used. Estimated values of optical densities of Ce(IV)perhydroxyphosphate over test areas were employed for calculation of kinetic parameters of (G6Pase). Highest activities of G6Pase (higher K m and V max levels) were found in periportal areas of the rat liver, indicating a higher amount of active enzyme molecules and a lower affinity for the substrate. Differences in values for both K m and V max between periportal and pericentral zones were highly significant and closely comparable to those for male fed rats. Correlations between K m and V max were significant for periportal as well for pericentral liver areas. The results of the present study thus allow the same biological implications as histochemical methods employing a final reaction for quantification of enzyme activities. The present method avoids the drawbacks of enhancement reactions and demonstrates the feasibility of in situ analysis of enzyme kinetic parameters by quantification of oxidized primary cerium reaction products. Accepted: 8 January 1996  相似文献   

20.
Summary d-Amino acid oxidase activity was demonstrated in peroxisomes of rat liver using unfixed cryostat sections and a histochemical technique using cerium ions as capture reagent for hydrogen peroxide and diaminobenzidine, cobalt ions and exogenous hydrogen peroxide to visualize the final reaction product for light microscopical analysis. Cytophotometric analysis of liver sections revealed similar zero-order reaction velocities of d-amino acid oxidase with activity twice as high in periportal areas as in pericentral areas of liver lobuli when using either d-proline or d,l-thiazolidine-2-carboxylic acid as substrates. On the other hand, a 4–5 times higher K M value was found for d-proline than for d,l-thiazolidine-2-carboxylic acid. The K M values in periportal and pericentral areas were similar for each substrate. These findings support the suggestion that the physiological substrate for d-amino acid oxidase may be d,l-thiazolidine-2-carboxylic acid, the adduct of cysteamine and glyoxylic acid. d-Amino acid oxidase may play a role in vivo in the production of oxalate which may participate in metabolic control processes as an intracellular messenger molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号