首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most molecular analyses, including phylogenetic inference, are based on sequence alignments. We present an algorithm that estimates relatedness between biomolecules without the requirement of sequence alignment by using a protein frequency matrix that is reduced by singular value decomposition (SVD), in a latent semantic index information retrieval system. Two databases were used: one with 832 proteins from 13 mitochondrial gene families and another composed of 1000 sequences from nine types of proteins retrieved from GenBank. Firstly, 208 sequences from the first database and 200 from the second were randomly selected and compared using edit distance between each pair of sequences and respective cosines and Euclidean distances from SVD. Correlation between cosine and edit distance was -0.32 (P < 0.01) and between Euclidean distance and edit distance was +0.70 (P < 0.01). In order to check the ability of SVD in classifying sequences according to their categories, we used a sample of 202 sequences from the 13 gene families as queries (test set), and the other proteins (630) were used to generate the frequency matrix (training set). The classification algorithm applies a voting scheme based on the five most similar sequences with each query. With a 3-peptide frequency matrix, all 202 queries were correctly classified (accuracy = 100%). This algorithm is very attractive, because sequence alignments are neither generated nor required. In order to achieve results similar to those obtained with edit distance analysis, we recommend that Euclidean distance be used as a similarity measure for protein sequences in latent semantic indexing methods.  相似文献   

2.
In molecular biology, the issue of quantifying the similarity between two biological sequences is very important. Past research has shown that word-based search tools are computationally efficient and can find some new functional similarities or dissimilarities invisible to other algorithms like FASTA. Recently, under the independent model of base composition, Wu, Burke, and Davison (1997, Biometrics 53, 1431 1439) characterized a family of word-based dissimilarity measures that defined distance between two sequences by simultaneously comparing the frequencies of all subsequences of n adjacent letters (i.e., n-words) in the two sequences. Specifically, they introduced the use of Mahalanobis distance and standardized Euclidean distance into the study of DNA sequence dissimilarity. They showed that both distances had better sensitivity and selectivity than the commonly used Euclidean distance. The purpose of this article is to extend Mahalanobis and standardized Euclidean distances to Markov chain models of base composition. In addition, a new dissimilarity measure based on Kullback-Leibler discrepancy between frequencies of all n-words in the two sequences is introduced. Applications to real data demonstrate that Kullback-Leibler discrepancy gives a better performance than Euclidean distance. Moreover, under a Markov chain model of order kQ for base composition, where kQ is the estimated order based on the query sequence, standardized Euclidean distance performs very well. Under such a model, it performs as well as Mahalanobis distance and better than Kullback-Leibler discrepancy and Euclidean distance. Since standardized Euclidean distance is drastically faster to compute than Mahalanobis distance, in a usual workstation/PC computing environment, the use of standardized Euclidean distance under the Markov chain model of order kQ of base composition is generally recommended. However, if the user is very concerned with computational efficiency, then the use of Kullback-Leibler discrepancy, which can be computed as fast as Euclidean distance, is recommended. This can significantly enhance the current technology in comparing large datasets of DNA sequences.  相似文献   

3.
The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved for the alignment of divergent protein sequences. Firstly, individual weights are assigned to each sequence in a partial alignment in order to down-weight near-duplicate sequences and up-weight the most divergent ones. Secondly, amino acid substitution matrices are varied at different alignment stages according to the divergence of the sequences to be aligned. Thirdly, residue-specific gap penalties and locally reduced gap penalties in hydrophilic regions encourage new gaps in potential loop regions rather than regular secondary structure. Fourthly, positions in early alignments where gaps have been opened receive locally reduced gap penalties to encourage the opening up of new gaps at these positions. These modifications are incorporated into a new program, CLUSTAL W which is freely available.  相似文献   

4.
H Tyson 《Génome》1992,35(2):360-371
Optimum alignment in all pairwise combinations among a group of amino acid sequences generated a distance matrix. These distances were clustered to evaluate relationships among the sequences. The degree of relationship among sequences was also evaluated by calculating specific distances from the distance matrix and examining correlations between patterns of specific distances for pairs of sequences. The sequences examined were a group of 20 amino acid sequences of scorpion toxins originally published and analyzed by M.J. Dufton and H. Rochat in 1984. Alignment gap penalties were constant for all 190 pairwise sequence alignments and were chosen after assessing the impact of changing penalties on resultant distances. The total distances generated by the 190 pairwise sequence alignments were clustered using complete (farthest neighbour) linkage. The square, symmetrical input distance matrix is analogous to diallel cross data where reciprocal and parental values are absent. Diallel analysis methods provided analogues for the distance matrix to genetical specific combining abilities, namely specific distances between all sequence pairs that are independent of the average distances shown by individual sequences. Correlation of specific distance patterns, with transformation to modified z values and a stringent probability level, were used to delineate subgroups of related sequences. These were compared with complete linkage clustering results. Excellent agreement between the two approaches was found. Three originally outlying sequences were placed within the four new subgroups.  相似文献   

5.
Summary Three measures of sequence dissimilarity have been compared on a computer-generated model system in which substitutions in random sequences were made at randomly selected sites and the replacement character was chosen at random from the set of characters different from the original occupant of the site. The three measures were the conventionalmmismatch count between aligned sequences (AMC=m) and two measures not requiring prior sequence alignment. The latter two measures were the squared Euclidean distance between vectors of counts of t-tuples (t=1–6) of characters in the two sequences (multiplet distribution distances or MDD=d) and counts of characters not covered by word structures of statistically significant length common to the two sequences (common long words or CLW=SIB, SIS, or SAB). Average MDD distances were found to be two times average mismatch counts in the simulated sequences for all values of t from 1 to 6 and all degrees of substitution from one per sequence to so many as to produce, effectively, random sequences. This simple relation held independently of sequence length and of sequence composition. The relation was confirmed by exact results on small model systems and by formal asymptotic results in the limit of so few substitutions that no double hits occur and in the limit of two random sequences. The coefficient of variation for MDD distances was greater than that for mismatch counts for singlets but both measures approached the same low value for sextets. Needleman-Wunsch alignment produced incorrect mismatch counts at higher degrees of substitution. The model satisfied the conditions for the derivation of the Jukes-Cantor asymptotic adjustment, but its application produced increasingly bad results with increasing degrees of substitution in accord with earlier results on model and natural sequences. This fact was a consequence of the increase with increasing degrees of substitution of the sensitivity of the adjustment to error in the observations. Average CLW distances for a variety of common word structures were more or less parallel to MDD distances for appropriately long t-tuples. These results on model systems supported the validity of the two dissimilarity measures not requiring sequence alignment that was found in earlier work on natural sequences (Blaisdell 1989).  相似文献   

6.
A widely used algorithm for computing an optimal local alignment between two sequences requires a parameter set with a substitution matrix and gap penalties. It is recognized that a proper parameter set should be selected to suit the level of conservation between sequences. We describe an algorithm for selecting an appropriate substitution matrix at given gap penalties for computing an optimal local alignment between two sequences. In the algorithm, a substitution matrix that leads to the maximum alignment similarity score is selected among substitution matrices at various evolutionary distances. The evolutionary distance of the selected substitution matrix is defined as the distance of the computed alignment. To show the effects of gap penalties on alignments and their distances and help select appropriate gap penalties, alignments and their distances are computed at various gap penalties. The algorithm has been implemented as a computer program named SimDist. The SimDist program was compared with an existing local alignment program named SIM for finding reciprocally best-matching pairs (RBPs) of sequences in each of 100 protein families, where RBPs are commonly used as an operational definition of orthologous sequences. SimDist produced more accurate results than SIM on 50 of the 100 families, whereas both programs produced the same results on the other 50 families. SimDist was also used to compare three types of substitution matrices in scoring 444,461 pairs of homologous sequences from the 100 families.  相似文献   

7.
The 3D structural comparison of families of divergent homologous domains revealed two main populations of hydrophobic amino acids, one with a low and the other with a significantly higher mean solvent accessibility, allowing two regions of the core of protein globular domains to be distinguished. The side chains of hydrophobic amino acids in topologically conserved positions (positions in the structural alignment where only hydrophobic amino acids are found), which we call topohydrophobic positions, are considerably less dispersed than those of the other amino acids (hydrophobic or not). Mean distances between gravity centers of amino acids in topohydrophobic positions are significantly shorter than those for non-topohydrophobic positions and show that the corresponding amino acids are almost all in direct contact in the inner core of globular domains. This study also showed that the small number of topohydrophobic positions is a characteristic of the structural differences between proteins of a family. This criterion is independent of the sequence identity between the sequences and of the root-mean-square distance between their corresponding structures. Using sensitive sequence alignment processes it will be possible, for many protein families, to identify topohydrophobic positions from sequences only. Proteins 33:329–342, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
9.
For applications such as comparative modelling one major issue is the reliability of sequence alignments. Reliable regions in alignments can be predicted using sub-optimal alignments of the same pair of sequences. Here we show that reliable regions in alignments can also be predicted from multiple sequence profile information alone.Alignments were created for a set of remotely related pairs of proteins using five different test methods. Structural alignments were used to assess the quality of the alignments and the aligned positions were scored using information from the observed frequencies of amino acid residues in sequence profiles pre-generated for each template structure. High-scoring regions of these profile-derived alignment scores were a good predictor of reliably aligned regions.These profile-derived alignment scores are easy to obtain and are applicable to any alignment method. They can be used to detect those regions of alignments that are reliably aligned and to help predict the quality of an alignment. For those residues within secondary structure elements, the regions predicted as reliably aligned agreed with the structural alignments for between 92% and 97.4% of the residues. In loop regions just under 92% of the residues predicted to be reliable agreed with the structural alignments. The percentage of residues predicted as reliable ranged from 32.1% for helix residues to 52.8% for strand residues.This information could also be used to help predict conserved binding sites from sequence alignments. Residues in the template that were identified as binding sites, that aligned to an identical amino acid residue and where the sequence alignment agreed with the structural alignment were in highly conserved, high scoring regions over 80% of the time. This suggests that many binding sites that are present in both target and template sequences are in sequence-conserved regions and that there is the possibility of translating reliability to binding site prediction.  相似文献   

10.
Distance-based methods have been a valuable tool for ecologists for decades. Indirectly, distance-based ordination and cluster analysis, in particular, have been widely practiced as they allow the visualization of a multivariate data set in a few dimensions. The explicitly distance-based Mantel test and multiple regression on distance matrices (MRM) add hypothesis testing to the toolbox. One concern for ecologists wishing to use these methods lies in deciding whether to combine data vectors into a compound multivariate dissimilarity to analyze them individually. For Euclidean distances on scaled data, the correlation of a pair of multivariate distance matrices can be calculated from the correlations between the two sets of individual distance matrices if one set is orthogonal, demonstrating a clear link between individual and compound distances. The choice between Mantel and MRM should be driven by ecological hypotheses rather than mathematical concerns. The relationship between individual and compound distance matrices also provides a means for calculating the maximum possible value of the Mantel statistic, which can be considerably less than 1 for a given analysis. These relationships are demonstrated with simulated data. Although these mathematical relationships are only strictly true for Euclidean distances when one set of variables is orthogonal, simulations show that they are approximately true for weakly correlated variables and Bray–Curtis dissimilarities.  相似文献   

11.
12.
Among the fundamental problems in molecular evolution and in the analysis of homologous sequences are alignment, phylogeny reconstruction, and the reconstruction of ancestral sequences. This paper presents a fast, combined solution to these problems. The new algorithm gives an approximation to the minimal history in terms of a distance function on sequences. The distance function on sequences is a minimal weighted path length constructed from substitutions and insertions-deletions of segments of any length. Substitutions are weighted with an arbitrary metric on the set of nucleotides or amino acids, and indels are weighted with a gap penalty function of the form gk = a + (bxk), where k is the length of the indel and a and b are two positive numbers. A novel feature is the introduction of the concept of sequence graphs and a generalization of the traditional dynamic sequence comparison algorithm to the comparison of sequence graphs. Sequence graphs ease several computational problems. They are used to represent large sets of sequences that can then be compared simultaneously. Furthermore, they allow the handling of multiple, equally good, alignments, where previous methods were forced to make arbitrary choices. A program written in C implemented this method; it was tested first on 22 5S RNA sequences.   相似文献   

13.
We present a method for estimating the most general reversible substitution matrix corresponding to a given collection of pairwise aligned DNA sequences. This matrix can then be used to calculate evolutionary distances between pairs of sequences in the collection. If only two sequences are considered, our method is equivalent to that of Lanave et al. (1984). The main novelty of our approach is in combining data from different sequence pairs. We describe a weighting method for pairs of taxa related by a known tree that results in uniform weights for all branches. Our method for estimating the rate matrix results in fast execution times, even on large data sets, and does not require knowledge of the phylogenetic relationships among sequences. In a test case on a primate pseudogene, the matrix we arrived at resembles one obtained using maximum likelihood, and the resulting distance measure is shown to have better linearity than is obtained in a less general model.  相似文献   

14.
May AC 《Protein engineering》2001,14(4):209-217
Hierarchical classification is probably the most popular approach to group related proteins. However, there are a number of problems associated with its use for this purpose. One is that the resulting tree showing a nested sequence of groups may not be the most suitable representation of the data. Another is that visual inspection is the most common method to decide the most appropriate number of subsets from a tree. In fact, classification of proteins in general is bedevilled with the need for subjective thresholds to define group membership (e.g., 'significant' sequence identity for homologous families). Such arbitrariness is not only intellectually unsatisfying but also has important practical consequences. For instance, it hinders meaningful identification of protein targets for structural genomics. I describe an alternative approach to cluster related proteins without the need for an a priori threshold: one, through its use of dynamic programming, which is guaranteed to produce globally optimal solutions at all levels of partition granularity. Grouping proteins according to weights assigned to their aligned sequences makes it possible to delineate dynamically a 'core-periphery' structure within families. The 'core' of a protein family comprises the most typical sequences while the 'periphery' consists of the atypical ones. Further, a new sequence weighting scheme that combines the information in all the multiply aligned positions of an alignment in a novel way is put forward. Instead of averaging over all positions, this procedure takes into account directly the distribution of sequence variability along an alignment. The relationships between sequence weights and sequence identity are investigated for 168 families taken from HOMSTRAD, a database of protein structure alignments for homologous families. An exact solution is presented for the problem of how to select the most representative pair of sequences for a protein family. Extension of this approach by a greedy algorithm allows automatic identification of a minimal set of aligned sequences. The results of this analysis are available on the Web at http://mathbio.nimr.mrc.ac.uk/~amay.  相似文献   

15.
Protein sequence alignments are more reliable the shorter the evolutionary distance. Here, we align distantly related proteins using many closely spaced intermediate sequences as stepping stones. Such transitive alignments can be generated between any two proteins in a connected set, whether they are direct or indirect sequence neighbors in the underlying library of pairwise alignments. We have implemented a greedy algorithm, MaxFlow, using a novel consistency score to estimate the relative likelihood of alternative paths of transitive alignment. In contrast to traditional profile models of amino acid preferences, MaxFlow models the probability that two positions are structurally equivalent and retains high information content across large distances in sequence space. Thus, MaxFlow is able to identify sparse and narrow active-site sequence signatures which are embedded in high-entropy sequence segments in the structure based multiple alignment of large diverse enzyme superfamilies. In a challenging benchmark based on the urease superfamily, MaxFlow yields better reliability and double coverage compared to available sequence alignment software. This promises to increase information returns from functional and structural genomics, where reliable sequence alignment is a bottleneck to transferring the functional or structural characterization of model proteins to entire protein superfamilies.  相似文献   

16.
The minimal folding pathway or trajectory for a biopolymer can be defined as the transformation that minimizes the total distance traveled between a folded and an unfolded structure. This involves generalizing the usual Euclidean distance from points to one-dimensional objects such as a polymer. We apply this distance here to find minimal folding pathways for several candidate protein fragments, including the helix, the β-hairpin, and a nonplanar structure where chain noncrossing is important. Comparing the distances traveled with root mean-squared distance and mean root-squared distance, we show that chain noncrossing can have large effects on the kinetic proximity of apparently similar conformations. Structures that are aligned to the β-hairpin by minimizing mean root-squared distance, a quantity that closely approximates the true distance for long chains, show globally different orientation than structures aligned by minimizing root mean-squared distance.  相似文献   

17.
Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence.  相似文献   

18.
Consider a study of two groups of individuals infected with a population of a genetically related heterogeneous mixture of viruses, and multiple viral sequences are sampled from each person. Based on estimates of genetic distances between pairs of aligned viral sequences within individuals, we develop four new tests to compare intra-individual genetic sequence diversity between the two groups. This problem is complicated by two levels of dependency in the data structure: (i) Within an individual, any pairwise distances that share a common sequence are positively correlated; and (ii) for any two pairings of individuals which share a person, the two differences in intra-individual distances between the paired individuals are positively correlated. The first proposed test is based on the difference in mean intra-individual pairwise distances pooled over all individuals in each group, standardized by a variance estimate that corrects for the correlation structure using U-statistic theory. The second procedure is a nonparametric rank-based analog of the first test, and the third test contrasts the set of subject-specific average intra-individual pairwise distances between the groups. These tests are very easy to use and solve correlation problem (i). The fourth procedure is based on a linear combination of all possible U-statistics calculated on independent, identically distributed sequence subdatasets, over the two levels (i) and (ii) of dependencies in the data, and is more complicated than the other tests but can be more powerful. Although the proposed methods are empirical and do not fully utilize knowledge from population genetics, the tests reflect biology through the evolutionary models used to derive the pairwise sequence distances. The new tests are evaluated theoretically and in a simulation study, and are applied to a dataset of 200 HIV sequences sampled from 21 children.  相似文献   

19.
Isolates of cauliflower mosaic virus (CaMV) differ in host range and symptomatology. Knowledge of their sequence relationships should assist in identifying nucleotide sequences responsible for isolate-specific characters. Complete nucleotide sequences of the DNAs of eight isolates of CaMV were aligned and the aligned sequences were used to analyze phylogenetic relationships by maximum likelihood, bootstrapped parsimony, and distance methods. Isolates found in North America clustered separately from those isolated from other parts of the world. Additional isolates, for which partial sequences were available, were incorporated into phylogenetic analysis of the sequences of genome segments corresponding to individual protein coding regions or the large intergenic region of CaMV DNA. The analysis revealed several instances where the position of an isolate on a tree for one coding region did not agree with the position of the isolate on the tree for the complete genome or with its position on trees for other coding regions. Examination of the distribution of shared residue types of phylogenetically informative positions in anomalous regions suggested that most of the anomalies were due to recombination events during the evolution of the isolates. Application of an algorithm that searches for segments of significant length that are identical between pairs of isolates or contain a significantly high concentration of polymorphisms suggested two additional recombination events between progenitors of the isolates studied and an event between the XinJing isolate and a CaMV not represented in the data set. An earlier phylogenetic origin for CaMV than for carnation etched ring virus, the caulimovirus used as outgroup in these analyses, was deduced from the position of the outgroup with North American isolates in some trees, but with non-North American isolates in other trees. Correspondence to: U. Melcher  相似文献   

20.
We report the derivation of scores that are based on the analysis of residue-residue contact matrices from 443 3-dimensional structures aligned structurally as 96 families, which can be used to evaluate sequence-structure matches. Residue-residue contacts and the more than 3 x 10(6) amino acid substitutions that take place between pairs of these contacts at aligned positions within each family of structures have been tabulated and segregated according to the solvent accessibility of the residues involved. Contact maps within a family of structures are shown to be highly conserved (approximately 75%) even when the sequence identity is approaching 10%. In a comparison involving a globin structure and the search of a sequence databank (> 21,000 sequences), the contact probability scores are shown to provide a very powerful secondary screen for the top scoring sequence-structure matches, where between 69% and 84% of the unrelated matches are eliminated. The search of an aligned set of 2 globins against a sequence databank and the subsequent residue contact-based evaluation of matches locates all 618 globin sequences before the first non-globin match. From a single bacterial serine proteinase structure, the structural template approach coupled with residue-residue contact substitution data lead to the detection of the mammalian serine proteinase family among the top matches in the search of a sequence databank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号