首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M P Rols  J Teissié 《Biochemistry》1990,29(19):4561-4567
Cells can be transiently permeabilized by application of high electric pulses of short duration. A direct consequence of this treatment is to induce a fusogenic state in the pulsed membrane. The molecular events underlying these phenomena remain to be explained. During our work, we investigated the effects of pulsing buffer osmotic pressure on both electric field induced permeabilization and fusion of Chinese hamster ovary cells growing either in monolayers or in suspension. Osmotic pressure has no effect on the induction step of permeabilization, but its increase was shown to inhibit the expansion step and to decrease the efficiency of the resealing phase. Fusion efficiency was greatly affected by the osmotic pressure and by the physiological state of the cells. When cells were grown plated and when intercellular contacts were spontaneous and present during pulsation, increasing the osmotic pressure resulted in an increase in the fusion index. The opposite effect was observed for cells growing in suspension and brought into contact after pulsation. These results were tentatively explained in terms of the effect of the osmotic pressure on the membrane organization and cell-cell contact quality.  相似文献   

2.
Electropermeabilization is a nonviral method used to transfer genes into living cells. Up to now, the mechanism is still to be elucidated. Since cell permeabilization, a prerequired for gene transfection, is triggerred by electric field, its characteristics should depend on its vectorial properties. The present investigation addresses the effect of pulse polarity and orientation on membrane permeabilization and gene delivery by electric pulses applied to cultured mammalian cells. This has been directly observed at the single-cell level by using digitized fluorescence microscopy. While cell permeabilization is only slightly affected by reversing the polarity of the electric pulses or by changing the orientation of pulses, transfection level increases are observed. These last effects are due to an increase in the cell membrane area where DNA interacts. Fluorescently labelled plasmids only interact with the electropermeabilized side of the cell facing the cathode. The plasmid interaction with the electropermeabilized cell surface is stable and is not affected by pulses of reversed polarities. Under such conditions, DNA interacts with the two sites of the cell facing the two electrodes. When changing both the pulse polarity and their direction, DNA interacts with the whole membrane cell surface. This is associated with a huge increase in gene expression. This present study demonstrates the relationship between the DNA/membrane surface interaction and the gene transfer efficiency, and it allows to define the experimental conditions to optimize the yield of transfection of mammalian cells.  相似文献   

3.
The fusogenic state of the cell membrane can be induced by external electric field. When two fusogenic membranes are in close contact, cell fusion takes place. An appropriate hypotonic treatment of cells before the application of electric pulses significantly improves electrofusion efficiency. How hypotonic treatment improves electrofusion is still not known in detail. Our results indicate that at given induced transmembrane potential electroporation was not affected by buffer osmolarity. In contrast to electroporation, cells’ response to hypotonic treatment significantly affects their electrofusion. High fusion yield was observed when B16-F1 cells were used; this cell line in hypotonic buffer resulted in 41?±?9?% yield, while in isotonic buffer 32?±?11?% yield was observed. Based on our knowledge, these fusion yields determined in situ by dual-color fluorescence microscopy are among the highest in electrofusion research field. The use of hypotonic buffer was more crucial for electrofusion of CHO cells; the fusion yield increased from below 1?% in isotonic buffer to 10?±?4?% in hypotonic buffer. Since the same degree of cell permeabilization was achieved in both buffers, these results indicate that hypotonic treatment significantly improves fusion yield. The effect could be attributed to improved physical contact of cell membranes or to enhanced fusogenic state of the cell membrane itself.  相似文献   

4.
Electropermeabilization designates the use of electric pulses to overcome the barrier of the cell membrane. This physical method is used to transfer anticancer drugs or genes into living cells. Its mechanism remains to be elucidated. A position-dependent modulation of the membrane potential difference is induced, leading to a transient and reversible local membrane alteration. Electropermeabilization allows a fast exchange of small hydrophilic molecules across the membrane. It occurs at the positions of the cell facing the two electrodes on an asymmetrical way. In the case of DNA transfer, a complex process is present, involving a key step of electrophoretically driven association of DNA only with the destabilized membrane facing the cathode. We report here at the membrane level, by using fluorescence microscopy, the visualization of the effect of the polarity and the orientation of electric pulses on membrane permeabilization and gene transfer. Membrane permeabilization depends on electric field orientation. Moreover, at a given electric field orientation, it becomes symmetrical for pulses of reversed polarities. The area of cell membrane where DNA interacts is increased by applying electric pulses with different orientations and polarities, leading to an increase in gene expression. Interestingly, under reversed polarity conditions, part of the DNA associated with the membrane can be removed, showing some evidence for two states of DNA in interaction with the membrane: DNA reversibly associated and DNA irreversibly inserted.  相似文献   

5.
The aim of this paper is to draw information about influence of human red cell N-acetyl-neuraminic acid and its interaction with Ca++ on membrane itself stability. Then, changes of red cell behavior in reply to osmotic stress with and without Ca++ after treatment with neuraminidase has been studied. We noted that the treatment with neuraminidase causes spontaneous hemolysis (about 9%), independently of medium osmolarity. As regards membrane resistance to osmotic stretching, N-acetyl-neuraminic acid has a destabilizing effect on most erythrocytes whereas its interaction with Ca++ don't influences significantly membrane resistance to osmotic stretching. Nevertheless, in extreme conditions of osmolarity (i.e. when hemolysis of younger red cells occurs), destabilizing effect of N-acetyl-neuraminic acid is no longer observable and, on the contrary, when it interacts with Ca++, it increases the osmotic resistance of red cells.  相似文献   

6.
Electropermeabilization is a nonviral method successfully used to transfer genes into cells in vitro as in vivo. Although it shows promise in field of gene therapy, very little is known on the basic processes supporting the DNA transfer. The aim of the present investigation is to visualize gene electrotransfer and expression both in vitro and in vivo. In vitro studies have been performed by using digitized fluorescence microscopy. Membrane permeabilization occurs at the sides of the cell membrane facing the two electrodes. A free diffusion of propidium iodide across the membrane to the cytoplasm is observed in the seconds following electric pulses. Fluorescently labeled plasmids only interact with the electropermeabilized side of the cell facing the cathode. The plasmid interaction with the electropermeabilized cell surface is stable over a few minutes. Changing the polarity and the orientation of the pulses lead to an increase in gene expression. In vivo experiments have been performed in Tibialis Cranialis mice muscle. Electric field application lead to the in vivo expression of plasmid DNA. We directly visualize gene expression of the Green Fluorescent Protein (GFP) on live animals. GFP expression is shown to be increased by applying electric field pulses with different polarities and orientations.  相似文献   

7.
An increased permeability of a cell membrane during the application of high-voltage pulses results in increased transmembrane transport of molecules that otherwise cannot enter the cell. Increased permeability of a cell membrane is accompanied by increased membrane conductivity; thus, by measuring electric conductivity the extent of permeabilized tissue could be monitored in real time. In this article the effect of cell electroporation caused by high-voltage pulses on the conductivity of a cell suspension was studied by current-voltage measurements during and impedance measurement before and after the pulse application. At the same time the percentage of permeabilized and survived cells was determined and the extent of osmotic swelling measured. For a train of eight pulses a transient increase in conductivity of a cell suspension was obtained above permeabilization threshold in low- and high-conductive medium with complete relaxation in <1 s. Total conductivity changes and impedance measurements showed substantial changes in conductivity due to the ion efflux in low-conductive medium and colloid-osmotic swelling in both media. Our results show that by measuring electric conductivity during the pulses we can detect limit permeabilization threshold but not directly permeabilization level, whereas impedance measurements in seconds after the pulse application are not suitable.  相似文献   

8.
The bactericidal effect of hydrostatic pressure is reduced when bacteria are suspended in media with high osmolarity. To elucidate mechanisms responsible for the baroprotective effect of ionic and nonionic solutes, Lactococcus lactis was treated with pressures ranging from 200 to 600 MPa in a low-osmolarity buffer or with buffer containing 0.5 M sucrose or 4 M NaCl. Pressure-treated cells were characterized in order to determine viability, the transmembrane difference in pH (DeltapH), and multiple-drug-resistance (MDR) transport activity. Furthermore, pressure effects on the intracellular pH and the fluidity of the membrane were determined during pressure treatment. In the presence of external sucrose and NaCl, high intracellular levels of sucrose and lactose, respectively, were accumulated by L. lactis; 4 M NaCl and, to a lesser extent, 0.5 M sucrose provided protection against pressure-induced cell death. The transmembrane DeltapH was reversibly dissipated during pressure treatment in any buffer system. Sucrose but not NaCl prevented the irreversible inactivation of enzymes involved in pH homeostasis and MDR transport activity. In the presence 0.5 M sucrose or 4 M NaCl, the fluidity of the cytoplasmic membrane was maintained even at low temperatures and high pressure. These results indicate that disaccharides protect microorganisms against pressure-induced inactivation of vital cellular components. The protective effect of ionic solutes relies on the intracellular accumulation of compatible solutes as a response to the osmotic stress. Thus, ionic solutes provide only asymmetric protection, and baroprotection with ionic solutes requires higher concentrations of the osmolytes than of disaccharides.  相似文献   

9.
The bactericidal effect of hydrostatic pressure is reduced when bacteria are suspended in media with high osmolarity. To elucidate mechanisms responsible for the baroprotective effect of ionic and nonionic solutes, Lactococcus lactis was treated with pressures ranging from 200 to 600 MPa in a low-osmolarity buffer or with buffer containing 0.5 M sucrose or 4 M NaCl. Pressure-treated cells were characterized in order to determine viability, the transmembrane difference in pH (ΔpH), and multiple-drug-resistance (MDR) transport activity. Furthermore, pressure effects on the intracellular pH and the fluidity of the membrane were determined during pressure treatment. In the presence of external sucrose and NaCl, high intracellular levels of sucrose and lactose, respectively, were accumulated by L. lactis; 4 M NaCl and, to a lesser extent, 0.5 M sucrose provided protection against pressure-induced cell death. The transmembrane ΔpH was reversibly dissipated during pressure treatment in any buffer system. Sucrose but not NaCl prevented the irreversible inactivation of enzymes involved in pH homeostasis and MDR transport activity. In the presence 0.5 M sucrose or 4 M NaCl, the fluidity of the cytoplasmic membrane was maintained even at low temperatures and high pressure. These results indicate that disaccharides protect microorganisms against pressure-induced inactivation of vital cellular components. The protective effect of ionic solutes relies on the intracellular accumulation of compatible solutes as a response to the osmotic stress. Thus, ionic solutes provide only asymmetric protection, and baroprotection with ionic solutes requires higher concentrations of the osmolytes than of disaccharides.  相似文献   

10.
Electropermeabilization is a biological physical process in response to the presence of an applied electric field that is used for the transfer of hydrophilic molecules such as anticancer drugs or DNA across the plasma membranes of living cells. The molecular processes that support the transfer are poorly known. The aim of our study was to investigate the effect of high-voltage and low-voltage (HVLV) pulses in vitro with different orientations on cell permeabilization, viability and gene transfection. We monitored the permeabilization with unipolar and bipolar HVLV pulses with different train repetition pulses, showing that HVLV pulses increase cell permeabilization and cell viability. Gene transfer was also observed by measuring green fluorescent protein (GFP) expression. The expression was the same for HVLV pulses and electrogenotherapy pulses for in vitro experimentation. As the viability was better preserved for HVLV-pulsed cells, we managed to increase the number of GFP-expressing cells by up to 65?% under this condition. The use of bipolar HVLV train pulses increased gene expression to a higher extent, probably by affecting a larger part of the cell surface.  相似文献   

11.

Background  

Gene electrotransfer is a non-viral method used to transfer genes into living cells by means of high-voltage electric pulses. An exposure of a cell to an adequate amplitude and duration of electric pulses leads to a temporary increase of cell membrane permeability. This phenomenon, termed electroporation or electropermeabilization, allows various otherwise non-permeant molecules, including DNA, to cross the membrane and enter the cell. The aim of our research was to develop and test a new system and protocol that would improve gene electrotransfer by automatic change of electric field direction between electrical pulses.  相似文献   

12.
Chinese hamster ovary (CHO) cells in suspension were subjected to pulsed electric fields suitable for electrically mediated gene transfer (pulse duration longer than 1 ms). Using the chemiluminescence probe lucigenin, we showed that a generation of reactive-oxygen species (oxidative jump) was present when the cells were electropermeabilised using millisecond pulses. The oxidative jump yield was controlled by the extent of alterations allowing permeabilisation within the electrically affected cell area, but showed a saturating dependence on the pulse duration over 1 ms. Cell electropulsation induced reversible and irreversible alterations of the membrane assembly. The oxidative stress was only present when the membrane permeabilisation was reversible. Irreversible electrical membrane disruption inhibited the oxidative jump. The oxidative jump was not a simple feedback effect of membrane electropermeabilisation. It strongly controlled long-term cell survival. This had to be associated with the cell-damaging action of reactive-oxygen species. However, for millisecond-cumulated pulse duration, an accumulation of a large number of short pulses (microsecond) was extremely lethal for cells, while no correlation with an increased oxidative jump was found. Cell responses, such as the production of free radicals, were present during electropermeabilisation of living cells and controlled partially the long-term behaviour of the pulsed cell.  相似文献   

13.
DNase X is the first mammalian DNase to be isolated that is homologous to DNase I. In this study, we have examined its function using a novel monoclonal antibody and showed it to be expressed on the cell surface as a glycosylphosphatidylinositolanchored membrane protein. High level expression was observed in human muscular tissues and in myotubes obtained in vitro from RD rhabdomyosarcoma cells. We observed that RD myotubes incorporated a foreign gene, lacZ, by endocytosis but that expression of the encoded coding product, beta-galactosidase, was strongly inhibited. Overexpression of DNase X inhibited endocytosis-mediated gene transfer, whereas knockdown of DNase X with small interfering RNA had the opposite effect. These results reveal that DNase X provides a cell surface barrier to endocytosis-mediated gene transfer.  相似文献   

14.
About 25 years after the publication of the first report on gene transfer in vitro in cultured cells by the means of electric pulses delivery, reversible cell electroporation for gene transfer and gene therapy (DNA electrotransfer) is at a cross in its development. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed. This knowledge has allowed developing new nucleic acids electrotransfer conditions using combinations of permeabilizing pulses of high voltage and short duration, and of electrophoretic pulses of low voltage and long duration, which are very efficient and safer. Feasibility of electric pulses delivery for gene transfer in humans is discussed taking into account that electric pulses delivery is already regularly used for localized drug delivery in the treatment of cutaneous and subcutaneous solid tumors by electrochemotherapy. Because recent technological developments made DNA electrotransfer more and more efficient and safer, this non-viral gene therapy approach is now ready to reach the clinical stage. A good understanding of DNA electrotransfer principles and the respect of safe procedures will be key elements for a successful future transfer DNA electrotransfer into the clinics.  相似文献   

15.
In many cell systems, electric pulses can efficiently mediate gene transfer with a high level of expression in vitro. In vivo results have been reported where decrease in efficiency was obtained. The mechanisms involved in the process are unknown. Since, in vivo, the efficiency of non-viral methods of gene transfer is generally limited by the presence of serum, we report here the effect of serum on in vitro electrically mediated chinese hamster ovary cell membrane permeabilization, viability, gene transfer and expression. The results indicate that permeabilization and gene transfer are not inhibited by serum. By acting as a protector of cell viability, serum indeed increases gene transfer and expression.  相似文献   

16.
Membrane electropermeabilization to small molecules depends on several physical parameters (pulse intensity, number, and duration). In agreement with a previous study quantifying this phenomenon in terms of flow (Rols and Teissié, Biophys. J. 58:1089-1098, 1990), we report here that electric field intensity is the deciding parameter inducing membrane permeabilization and controls the extent of the cell surface where the transfer can take place. An increase in the number of pulses enhances the rate of permeabilization. The pulse duration parameter is shown to be crucial for the penetration of macromolecules into Chinese hamster ovary cells under conditions where cell viability is preserved. Cumulative effects are observed when repeated pulses are applied. At a constant number of pulses/pulse duration product, transfer of molecules is strongly affected by the time between pulses. The resealing process appears to be first-order with a decay time linearly related to the pulse duration. Transfer of macromolecules to the cytoplasm can take place only if they are present during the pulse. No direct transfer is observed with a postpulse addition. The mechanism of transfer of macromolecules into cells by electric field treatment is much more complex than the simple diffusion of small molecules through the electropermeabilized plasma membrane.  相似文献   

17.
Varying osmolarity with sucrose/KCl media resulted in similar effects on the oxidation of glutamate by mitochondria isolated from the livers of an elasmobranch, Raja erinacea, and a teleost, Pseudopleuronectes americanus. In both species trimethylamine oxide (TMAO) inhibited mitochondrial oxidation of glutamate. Urea penetrated the inner mitochondrial membrane of both species and equilibrated with a ratio ureai/ureao of unity. Urea had little effect on the oxidation of glutamate in both species at concentrations as high as 760 mM. Addition of urea (urea/TMAO, 2:1) did not overcome the detrimental effects of TMAO in the mitochondria of either species. In the case of the elasmobranch, the osmolarity of the urea/TMAO media giving the optimal rate of respiration was hypoosmotic with respect to the intracellular osmolarity. The rate of glutamate oxidation steadily declined as osmolarity increased above this value. Assuming the osmotic profile obtained with the urea/TMAO (2:1) medium resembled most closely the in vivo situation, higher rates of oxidation or organic solutes at low osmolarity would help deplete the cell of these solutes and could contribute to cell volume regulation during hypoosmotic stress. It is suggested that two broad classes of intracellular solutes can be defined based on their effects on mitochondrial respiration. Solutes such as K+, C1-, and TMAO penetrate the inner mitochondrial membrane slowly or not at all. Increasing concentrations of these solutes result in lower rates of oxidation. This capacity may be important in regulating intracellular levels of organic solutes during osmotic stress. Solutes such as urea rapidly penetrate the cell and inner mitochondrial membrane reducing the mitochondrial volume changes associated with osmotic stress. The known detrimental effects of urea on protein structure may prevent its exclusive use as an intracellular osmotic effector.  相似文献   

18.
The effects of intense submicrosecond electrical pulses on cells   总被引:5,自引:0,他引:5       下载免费PDF全文
A simple electrical model for living cells predicts an increasing probability for electric field interactions with intracellular substructures of both prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the sub-microsecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses (durations 100 micros-60 ns, electric field intensities 3-150 kV/cm) to Jurkat cells suspended in physiologic buffer containing propidium iodide. Effects on Jurkat cells were assessed by means of temporally resolved fluorescence and light microscopy. For the longest applied pulses, immediate uptake of propidium iodide occurred consistent with electroporation as the cause of increased surface membrane permeability. For nanosecond pulses, more delayed propidium iodide uptake occurred with significantly later uptake of propidium iodide occurring after 60 ns pulses compared to 300 ns pulses. Cellular swelling occurred rapidly following 300 ns pulses, but was minimal following 60 ns pulses. These data indicate that submicrosecond pulses achieve temporally distinct effects on living cells compared to microsecond pulses. The longer pulses result in rapid permeability changes in the surface membrane that are relatively homogeneous across the cell population, consistent with electroporation, while shorter pulses cause surface membrane permeability changes that are temporally delayed and heterogeneous in their magnitude.  相似文献   

19.
Electropermeabilization of immobilized human leukemia K562 cells was studied by measuring changes in cell volume. Such changes reflect mass transfer between the cell and external medium. Electropermeabilization was carried out in an isosmotic water-sorbitol medium with a range of electric field strengths from 500 to 800 V. cm(-1), corresponding to low-energy levels. Electroporation of the K562 cell membrane was found to provoke an inflow of sorbitol and a corresponding osmotic inflow of water and/or an outflow of intracellular solutes due to Fick diffusion. Such flows were found to involve the shrinkage, swelling, or rupture of K562 cells, depending on the characteristics of the electric field and of the physiological state of cells. The behavior of immobilized cells was observed during their exposure to the electric field. The response in immobilized cell volume corresponded with the theoretical pore size and pore opening time, permitting an explanation of the behavior of cell suspensions subject to electrical fields.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号