首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protease-producing bacteria isolated from sub-Antarctic marine sediments of Isla de Los Estados (Argentina) were characterized, and the thermal inactivation kinetics of their extracellular proteases compared. Isolates were affiliated with the genera Pseudoalteromonas, Shewanella, Colwellia, Planococcus, and a strain to the family Flavobacteriaceae. Colwellia strains were moderate psychrophiles (optimal growth at about 15°C, maximum growth temperature at around 25°C). 16S rRNA phylogenetic analysis revealed that these strains and Colwellia aestuarii form a distinct lineage within the genus. The remaining isolates were psychrotolerant and grew optimally between 20 and 25°C; two of them represent potentially novel species or genus (16S rRNA < 97% sequence similarity). The thermostability of the extracellular proteases produced by the isolates was analysed, and the inactivation rate constant (k in), the activation energy (Eain) and the activation Gibbs free energy of thermal inactivation (ΔG * in) determined. ΔG * in, calculated at 30°C, varied between 97 and 124 kJ/mol. Colwellia enzyme extracts presented the highest thermosensitivity, while the most thermostable protease activity was shown by Shewanella spp. These results demonstrated that the stability to temperature of these enzymes varies considerably among the isolates, suggesting important variations in the thermal properties of the proteases that can coexist in this environment.  相似文献   

2.
Microbulbifer strain CMC-5 was isolated from decomposing seaweeds, and was found to degrade agar, alginate, carboxymethyl cellulose, carrageenan, xylan, and chitin. The extracellular agarase enzyme from strain CMC-5 was purified 103-fold by ultrafiltration, ion-exchange chromatography, using diethylaminoethyl sepharose FF, and gel filtration, using sephacryl S-300HR, with a yield of 6.7%. Zymogram and protein staining of the purified agarase on a SDS-polyacrylamide gel revealed a single band, with an apparent molecular weight of 59 kDa. The purified enzyme was endo-type β-agarase, as it was able to hydrolyze the β-1, 4 glycosidic linkages of agarose, releasing neoagarotetraose and neoagarohexaose as the end products. The optimum pH and temperature of agarase were 7 and 50°C, respectively. Thermal stability studies indicated that the agarase retained 62% of its activity after incubating at 50°C for 30 min. Treatment with EDTA reduced the agarase activity by 54%. The agarase activity was stimulated by the presence of Ca2+ and Mg2+ ions; whereas, Zn2+, Hg2+, Cu2+, Fe2+, and Co2+ abolished the activity. Further, the presence of NaCl at concentrations lower than 100 mM caused a decrease in the agarase activity; whereas, the activity was enhanced up to a concentration of 500 mM.  相似文献   

3.
Among 67 psychrotrophic bacterial isolates of Leh, India screened for production of hydrolytic enzymes at 10 °C, four belonging to Aeromonas hydrophila were characterized and evaluated for biodegradation of night soil. All strains produced metalloproteases on a variety of carbon and nitrogen sources. Strains LA1 and LA15 also produced α-amylase and PC5 both α- & β-amylase. No amylase was produced by PN7, however it produced lipase. Casein and glucose induced maximum enzyme activity (protease and amylase) in LA15 and PC5, respectively. In LA1, maximum induction of protease was observed with casein and of amylase with maltose. Corn oil/tributyrin served as the best inducers for protease and lipase production by PN7. A. hydrophila strains were found to be psychrotrophic with optimum growth and enzyme activity at 20 and 37 °C, respectively. Maximum biodegradation of night soil was observed by strain LA1 at 5–20 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The diversity of culturable bacteria associated with sea ice from four permanently cold fjords of Spitzbergen, Arctic Ocean, was investigated. A total of 116 psychrophilic and psychrotolerant strains were isolated under aerobic conditions at 4°C. The isolates were grouped using amplified rDNA restriction analysis fingerprinting and identified by partial sequencing of 16S rRNA gene. The bacterial isolates fell in five phylogenetic groups: subclasses and of Proteobacteria, the BacillusClostridium group, the order Actinomycetales, and the Cytophaga–Flexibacter–Bacteroides (CFB) phylum. Over 70% of the isolates were affiliated with the Proteobacteria subclass. Based on phylogenetic analysis (<98% sequence similarity), over 40% of Arctic isolates represent potentially novel species or genera. Most of the isolates were psychrotolerant and grew optimally between 20 and 25°C. Only a few strains were psychrophilic, with an optimal growth at 10–15°C. The majority of the bacterial strains were able to secrete a broad range of cold-active hydrolytic enzymes into the medium at a cultivation temperature of 4°C. The isolates that are able to degrade proteins (skim milk, casein), lipids (olive oil), and polysaccharides (starch, pectin) account for, respectively, 56, 31, and 21% of sea-ice and seawater strains. The temperature dependences for enzyme production during growth and enzymatic activity were determined for two selected enzymes, -amylase and -galactosidase. Interestingly, high levels of enzyme productions were measured at growth temperatures between 4 and 10°C, and almost no production was detected at higher temperatures (20–30°C). Catalytic activity was detected even below the freezing point of water (at –5°C), demonstrating the unique properties of these enzymes.  相似文献   

5.
Oscillatorian cyanobacteria dominate benthic microbial mat communities in many polar freshwater ecosystems. Capable of growth at low temperatures, all benthic polar oscillatorians characterized to date are psychrotolerant (growth optima > 15° C) as opposed to psychrophilic (growth optima ≤ 15° C). Here, psychrophilic oscillatorians isolated from meltwater ponds on Antarctica's McMurdo Ice Shelf are described. Growth and photosynthetic rates were investigated at multiple temperatures, and compared with those of a psychrotolerant isolate from the same region. Two isolates showed a growth maximum at 8° C, with rates of 0.12 and 0.08 doublings·d ? 1, respectively. Neither displayed detectable growth at 24° C. The psychrotolerant isolate showed almost imperceptible growth at 4° C and a rate of 0.9 doublings·d ? 1 at its optimal temperature of ~23° C. In both photosynthesis versus irradiance and photosynthesis versus temperature experiments, exponentially growing cultures were acclimated for 14 days at 3, 8, 12, 20, and 24° C under saturating light intensity, and [14C] photoincorporation rates were measured. Psychrophilic isolates acclimated at 8° C showed greatest photosynthetic rates; those acclimated at 3° C were capable of active photosynthesis, but photoincorporation was not detected in cells acclimated at 20 and 24° C, because these isolates were not viable after 14 days at those temperatures. The psychrotolerant isolate, conversely, displayed maximum photosynthetic rates at 24° C, though photoincorporation was actively occurring at 3° C. Within acclimation temperature treatments, short‐term photosynthetic rates increased with increasing incubation temperature for both psychrophilic and psychrotolerant isolates. These results indicate the importance of temperature acclimation before assays when determining optimal physiological temperatures. All isolates displayed photosynthetic saturation at low light levels (<128 μmol·m ? 2·s ? 1) but were not photoinhibited at the highest light treatment (233 μmol·m ? 2·s ? 1). Field studies examining the impact of temperature on photosynthetic responses of intact benthic mats, under natural solar irradiance, showed the mat communities to be actively photosynthesizing from 2 to 20° C, with maximum photoincorporation at 20° C, as well as capable of a rapid response to an increase in temperature. The rarity of psychrophilic cyanobacteria, relative to psychrotolerant strains, may be due to their extremely slow growth rates and inability to take advantage of occasional excursions to higher temperatures. We suggest an evolutionary scenario in which psychrophilic strains, or their most recent common ancestor, lost the ability to grow at higher temperatures while maintaining a broad tolerance for fluctuations in other physical and chemical parameters that define shallow meltwater Antarctic ecosystems.  相似文献   

6.
The deep-sea water of the South Pacific Gyre (SPG, 20°S–45°S) is a cold and ultra-oligotrophic environment that is the source of cold-adapted enzymes. However, the characteristic features of psychrophilic enzymes derived from culturable microbes in the SPG remained largely unknown. In this study, the degradation properties of 174 cultures from the deep water of the SPG were used to determine the diversity of cold-adapted enzymes. Thus, the abilities to degrade polysaccharides, proteins, lipids, and DNA at 4, 16, and 28 °C were investigated. Most of the isolates showed one or more extracellular enzyme activities, including amylase, chitinase, cellulase, lipase, lecithinase, caseinase, gelatinase, and DNase at 4, 16, and 28 °C. Moreover, nearly 85.6 % of the isolates produced cold-adapted enzymes at 4 °C. The psychrophilic enzyme-producing isolates distributed primarily in Alteromonas and Pseudoalteromonas genera of the Gammaproteobacteria. Pseudoalteromonas degraded 9 types of macromolecules but not cellulose, Alteromonas secreted 8 enzymes except for cellulase and chitinase. Interestingly, the enzymatic activities of Gammaproteobacteria isolates at 4 °C were higher than those observed at 16 or 28 °C. In addition, we cloned and expressed a gene encoding an α-amylase (Amy2235) from Luteimonas abyssi XH031T, and examined the properties of the recombinant protein. These cold-active enzymes may have huge potential for academic research and industrial applications. In addition, the capacity of the isolates to degrade various types of organic matter may indicate their unique ecological roles in the elemental biogeochemical cycling of the deep biosphere.  相似文献   

7.
The occurrence of extended-spectrum-β-lactamase (ESBL)-producing strains in the community was investigated in a private laboratory located in Juiz de Fora, Brazil. All enterobacterial isolates analysed were collected from urine of human patients between the years 2000 and 2002. ESBL production was confirmed by double disk screening, combination disk method, and Etest ESBL strip. The isoelectric point of each β-lactamase was determined in the crude extracts from each isolate. Detection of ESBL genes was performed by polymerase chain reaction and the genetic relatedness of the isolates determined by pulsed-field gel electrophoresis (PFGE). Of the 1,481 isolates, 22 (12 Klebsiella pneumoniae, 7 Escherichia coli, 1 Providencia stuartii, 1 Citrobacter freundii, and 1 Serratia marcescens) were identified as ESBL producers. The frequency of ESBL producers in the community was 1.48%. TEM-type enzymes were identified in 95.4% of the isolates, followed by the SHV type. Seven strains produced CTX-M–type enzymes. This study showed that strains producing multiple β-lactamases are also present in community-acquired bacterial isolates. Multiple strains exhibiting identical PFGE genotypes were found in individual patients indicating a common source of acquisition.  相似文献   

8.
Two new compounds, 2′,3′-di-O-ethoxycarbonyluridine and 2′,3′-di-O-ethoxycarbonylinosine, were obtained through a Candida antarctica lipase B catalysed regioselective ethanolysis of the corresponding trialcoxycarbonylated nucleosides with benzyl alcohol in 1,4-dioxane at 30°C.  相似文献   

9.
The low thermostability of cold-adapted enzymes is a main barrier for their application. A simple and reliable method to improve both the stability and the activity of cold-adapted enzymes is still rare. As a protein stabilizer, the effect of trimethylamine N-oxide (TMAO) on a cold-adapted enzyme or protein has not been reported. In this study, effects of TMAO on the structure, activity, and stability of a cold-adapted protease, deseasin MCP-01, were studied. Deseasin MCP-01 is a new type of subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Fluorescence and CD spectra showed that TMAO did not perturb the structure of MCP-01 and therefore kept the conformational flexibility of MCP-01. One molar TMAO improved the activity of MCP-01 by 174% and its catalytic efficiency (k cat /K m) by 290% at 0°C. In the presence of 1 M TMAO, the thermostability (t 1/2) of MCP-01 increased by two- to fivefold at 60∼40°C. Structural analysis with CD showed that 1 M TMAO could keep the structural thermostability of MCP-01 close to that of its mesophilic counterpart subtilisin Carlsberg when incubated at 40°C for 1 h. Moreover, 1 M TMAO increased the melting temperature (T m) of MCP-01 by 10.5°C. These results suggest that TMAO can be used as a perfect stabilizing agent to retain the psychrophilic characters of a cold-adapted enzyme and simultaneously improve its thermostability.  相似文献   

10.
A total of 132 yeast strains were characterised from 4 sediment samples collected from small puddles in the vicinity of Midre Lovénbreen glacier, Arctic. Based on the D1/D2 domain sequence similarity, the isolates could be categorised into 6 groups. The nearest phylogenetic neighbour of groups I to VI were identified as Cryptococcus gastricus, Cryptococcus terricolus, Rhodotorula muscorum, Mrakia psychrophila, Mrakia gelida and Rhodotorula glacialis, respectively. Strains representative of the six groups were psychrophilic and salt tolerant but varied in their ability to produce cold-active extracellular enzymes such as lipase, protease, pectinase, cellulase and amylase. C18:1 (w9C) and C18:2 (w9,12C) were the only two fatty acids common to all the yeasts and branched and (or) unsaturated fatty acids increased in yeasts growing at 8°C compared to 22°C, probably as an adaptation to low temperature. The present study establishes that psychrophilic yeasts are predominant in Arctic and could be used as work horses to produce cold-active enzymes and poly unsaturated fatty acids which have been implicated in low temperature adaptation and also for their use in biotechnology.  相似文献   

11.
Exopolysaccharides (EPS) may have an important role in the Antarctic marine environment, possibly acting as ligands for trace metal nutrients such as iron or providing cryoprotection for growth at low temperature and high salinity. Ten bacterial strains, isolated from Southern Ocean particulate material or from sea ice, were characterized. Whole cell fatty acid profiles and 16S rRNA gene sequences showed that the isolates included representatives of the genera Pseudoalteromonas, Shewanella, Polaribacter, and Flavobacterium as well as one strain, which constituted a new bacterial genus in the family Flavobacteriaceae. The isolates are, therefore, members of the “Gammaproteobacteria” and Cytophaga-Flexibacter-Bacteroides, the taxonomic groups that have been shown to dominate polar sea ice and seawater microbial communities. Exopolysaccharides produced by Antarctic isolates were characterized. Chemical composition and molecular weight data revealed that these EPS were very diverse, even among six closely related Pseudoalteromonas isolates. Most of the EPS contained charged uronic acid residues; several also contained sulfate groups. Some strain produced unusually large polymers (molecular weight up to 5.7 MDa) including one strain in which EPS synthesis is stimulated by low temperature. This study represents a first step in the understanding of the role of bacterial EPS in the Antarctic marine environment.  相似文献   

12.
Zhang XF  Yao TD  Tian LD  Xu SJ  An LZ 《Microbial ecology》2008,55(3):476-488
The microbial abundance, the percentage of viable bacteria, and the diversity of bacterial isolates from different regions of a 83.45-m ice core from the Puruogangri glacier on the Tibetan Plateau (China) have been investigated. Small subunit 16S rRNA sequences and phylogenetic relationships have been studied for 108 bacterial isolates recovered under aerobic growth conditions from different regions of the ice core. The genomic fingerprints based on ERIC (enterobacterial repetitive intergenic consensus)-polymerase chain reaction and physiological heterogeneity of the closely evolutionary related bacterial strains isolated from different ice core depths were analyzed as well. The results showed that the total microbial cell, percentages of live cells, and the bacterial CFU ranged from 104 to 105 cell ml−1 (Mean, 9.47 × 104; SD, 5.7 × 104, n = 20), 25–81%, and 0–760 cfu ml−1, respectively. The majority of the isolates had 16S rRNA sequences similar to previously determined sequences, ranging from 92 to 99% identical to database sequences. Based on their 16S rRNA sequences, 42.6% of the isolates were high-G + C-content (HGC) gram-positive bacteria, 35.2% were low-G + C (LGC) gram-positive bacteria, 16.6% were Proteobacteria, and 5.6% were CFB group. There were clear differences in the depth distribution of the bacterial isolates. The isolates tested exhibited unique phenotypic properties and high genetic heterogeneity, which showed no clear correlation with depths of bacterial isolation. This layered distribution and high heterogeneity of bacterial isolates presumably reflect the diverse bacterial sources and the differences in bacteria inhabiting the glacier’s surface under different past climate conditions.  相似文献   

13.
Halogenated compounds have been incorporated into the environment, principally through industrial activities. Nonetheless, microorganisms able to degrade halophenols have been isolated from neither industrial nor urban environments. In this work, the ability of bacterial communities from oligotrophic psychrophilic lakes to degrade 2,4,6-tribromophenol and 2,4,6-trichlorophenol, and the presence of the genes tcpA and tcpC described for 2,4,6-trichlorophenol degradation were investigated. After 10 days at 4°C, the microcosms showed the ability to degrade both halophenols. Nonetheless, bacterial strains isolated from the microcosms did not degrade any of the halophenols, suggesting that the degradation was done by a bacterial consortium. Genes tcpA and tcpC were not detected. Results demonstrated that the bacterial communities present in oligotrophic psycrophilic lakes have the ability to degrade halophenolic compounds at 4°C and the enzymes involved in their degradation could be codified in genes different to those described for bacteria isolated from environments contaminated by industrial activities.  相似文献   

14.
The major part (94%) of the Bacillus cereus-like isolates from a Danish sandy loam are psychrotolerant Bacillus weihenstephanensis according to their ability to grow at temperatures below 7 °C and/or two PCR-based methods, while the remaining 6% are B. cereus. The Bacillus mycoides-like isolates could also be␣divided into psychrotolerant and mesophilic isolates. The psychrotolerant isolates of B. mycoides could␣be discriminated from the mesophilic by the two PCR-based methods used to characterize B.␣weihenstephanensis. It is likely that the mesophilic B. mycoides strains are synonymous with Bacillus pseudomycoides, while psychrotolerant B. weihenstephanensis, like B. mycoides, are B. mycoides senso stricto. B. cereus is known to produce a number of factors, which are involved in its ability to cause gastrointestinal and somatic diseases. All the B. cereus-like and B. mycoides like isolates from the sandy loam were investigated by PCR for the presence of 12 genes encoding toxins. Genes for the enterotoxins (hemolysin BL and nonhemolytic enterotoxin) and the two of the enzymes (cereolysin AB) were present in the major part of the isolates, while genes for phospolipase C and hemolysin III were present in fewer isolates, especially among B. mycoides like isolates. Genes for cytotoxin K and the hemolysin II were only present in isolates affiliated to B. cereus. Most of the mesophilic B. mycoides isolates did not possess the genes for the nonhemolytic enterotoxin and the cereolysin AB. The presence of multiple genes coding for virulence factors in all the isolates from the B. cereus group suggests that all the isolates from the sandy loam are potential pathogens.  相似文献   

15.
Five tempe-derived bacterial strains identified as Micrococcus or Arthrobacter species were shown to transform the soybean isoflavones daidzein and glycitein to polyhydroxylated isoflavones by different hydroxylation reactions. All strains converted glycitein and daidzein to 6,7,4′-trihydroxyisoflavone (factor 2) and the latter substrate also to 7,8,4′-trihydroxyisoflavone. Three strains transformed daidzein to 7,8,3′,4′-tetrahydroxyisoflavone and 6,7,3′,4′-tetrahydroxyisoflavone. In addition, two strains formed 6,7,8,4′-tetrahydroxyisoflavone from daidzein. Conversion of glycitein by these two strains led to the formation of factor 2 and 6,7,3′,4′-tetrahydroxyisoflavone. The structures of these transformation products were elucidated by spectroscopic techniques and chemical degradation. Revision received: 9 September 1995 / Accepted: 21 September 1995  相似文献   

16.
Glacial-ice microorganisms are intensively studied world-wide for a number of reasons, including their psychrophilic lifestyle, their usefulness in biotechnology procedures and their relationship with the search of life outside our planet. However, because of the difficulties for accessing and working at altitudes of >5.000 m above sea level, tropical glaciers have received much less attention than their arctic and antarctic counterparts. In the present work we isolated and characterized a total of forty-five pure isolates originating from direct plating of melted ice collected at the base of a rapidly-retreating, small glacier located at around 4.900 m.a.s.l. in Mount Humboldt (Sierra Nevada National Park, Mérida State, Venezuela). Initial examination of melted ice showed the presence of abundant- (>106 cells ml?1), morphologically diverse- and active bacterial cells, many of which were very small (“dwarf cells”). The majority of the isolates were psychrophilic or psychrotolerant and many produced and excreted cold-active extracellular enzymes (proteases and amylases). The antibiotic tests showed an elevated percentage of isolates resistant to high doses (100 μg/ml) of different antibiotics including ampicillin, penicillin, nalidixic acid, streptomycin, chloramphenicol, kanamycin and tetracycline. Multiresistance was also observed, with 22.22 % of the strains simultaneously resistant up to five of the antibiotics tested. Metal resistance against Ni++, Zn++ and Cu++ was also detected. In accordance with these results, plasmids of low and high molecular weight were detected in 47 % of the isolates. Twenty-two partial 16S rDNA sequences analyzed allowed grouping the isolates within five different phyla/classes: Alpha-, Beta- and Gamma-proteobacteria, Actinobacteria and Flavobacteria. This is the first report concerning South American Andean glacial ice microorganisms.  相似文献   

17.
Lipids of ten Shewanella frigidimarina strains isolated from sea ice samples of coastal areas of the Sea of Japan and of the type strains of psychrophilic bacteria S. frigidimarina ACAM 591T and S. hanedai JCM 20706T were analyzed. Most of the new isolates contained isoprenoid quinones typical of the genus Shewanella (Q-7, Q-8, MK-7, and MMK-7), a high level of branched acids (i-13:0 and i-15:0), and polyunsaturated fatty acid (20:5 ω3). Phospholipid fractions of marine isolates and the type strain S. frigidimarina ACAM 591T contained not only the main phospholipids (phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol), but also an unknown phosphoaminolipid, which is probably typical of this bacterial species. The isolates exhibited a high level of phylogenetic similarity but were phenotypically heterogeneous. Two strains distinguished by their phenotypic characteristics differed also in the composition of fatty acids, isoprenoid quinones, and phospholipids. The use of chemotaxonomic markers for primary species identification of psychrophilic bacteria of the genus Shewanella is discussed.  相似文献   

18.
The bacterial populations associated with sea ice sampled from Antarctic coastal areas were investigated by use of a phenotypic approach and a phylogenetic approach based on genes encoding 16S rRNA (16S rDNA). The diversity of bacteria associated with sea ice was also compared with the bacterial diversity of seawater underlying sea ice. Psychrophilic (optimal growth temperature, < or = 15 degrees C; no growth occurring at 20 degrees C) bacterial diversity was found to be significantly enriched in sea ice samples possessing platelet and bottom ice diatom assemblages, with 2 to 9 distinct (average, 5.6 +/- 1.8) psychrophilic taxa isolated per sample. Substantially fewer psychrophilic isolates were recovered from ice cores with a low or negligible population of ice diatoms or from under-ice seawater samples (less than one distinct taxon isolated per sample). In addition, psychrophilic taxa that were isolated from under-ice seawater samples were in general phylogenetically distinct from psychrophilic taxa isolated from sea ice cores. The taxonomic distributions of psychrotrophic bacterial isolates (optimal growth temperature, > 20 degrees C; growth can occur at approximately 4 degrees C) isolated from sea ice cores and under-ice seawater were quite similar. Overall, bacterial isolates from Antarctic sea ice were found to belong to four phylogenetic groups, the alpha and gamma subdivisions of the Proteobacteria, the gram-positive branch, and the Flexibacter-Bacteroides-Cytophaga phylum. Most of the sea ice strains examined appeared to be novel taxa based on phylogenetic comparisons, with 45% of the strains being psychrophilic. 16S rDNA sequence analysis revealed that psychrophilic strains belonged to the genera Colwellia, Shewanella, Marinobacter, Planococcus, and novel phylogenetic lineages adjacent to Colwellia and Alteromonas and within the Flexibacter-Bacteroides-Cytophaga phylum. Psychrotrophic strains were found to be members of the genera Pseudoalteromonas, Psychrobacter, Halomonas, Pseudomonas, Hyphomonas, Sphingomonas, Arthrobacter, Planococcus, and Halobacillus. From this survey, it is proposed that ice diatom assemblages provide niches conducive to the proliferation of a diverse array of psychrophilic bacterial species.  相似文献   

19.
We have previously reported a non-processive endo-type chitinase, ChiA, from a newly isolated marine psychrophilic bacterium, Pseudoalteromonas sp. DL-6. In this study, a processive exo-type chitinase, ChiC, was cloned from the same bacterium and characterized in detail. ChiC could hydrolyze crystalline chitin into (GlcNAc)2 as the only observed product. It exhibited high catalytic activity even at low temperatures, e.g. close to 0 °C, or in the presence of 5 M NaCl, suggesting that ChiC was a cold-adapted and highly salt-tolerant chitinase. ChiC could also hydrolyze other substrates, including chitosan and Avicel, indicating its broad substrate specificity. Sequence features indicated that ChiC was a multi-domain protein having a deep substrate-binding groove that was regarded as characteristic of processive exo-chitinases. Enzymatic hydrolysis of chitin by ChiC could be remarkably boosted in the presence of ChiA, suggesting the synergy of ChiC and ChiA. This work provided a new evidence to prove that marine psychrophilic bacteria utilized a synergistic enzyme system to degrade recalcitrant chitin.  相似文献   

20.
Two chitinolytic fungal strains, Trichoderma aureoviride DY-59 and Rhizopus microsporus VS-9, were isolated from soil samples of Korea and Vietnam, respectively. DY-59 and VS-9 crude chitinases secreted by these fungi in the 0.5% swollen chitin culture medium had an optimal pH of 4 and the optimal temperatures of 40°C and 60°C, respectively. Enzymatic hydrolysis products from crab swollen chitin were N-acetyl-β-D-glucosamine (GlcNAc) by DY-59 chitinase, and GlcNAc and N, N′-diacetylchitobiose (GlcNAc)2 by VS-9 chitinases. The chitinases degraded the cell wall of Fusarium solani hyphae to produce oligosaccharides, among which GlcNAc, (GlcNAc)2, and pentamer (GlcNAc)5 were identified by high-pressure liquid chromatography. DY-59 and VS-9 chitinases inhibited F. solani microconidial germination by more than 70% and 60% at final protein concentrations of 5 and 27 μg mL−1, respectively, at 30°C for 20 h treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号