首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proportion in which carbon and growth-limiting nutrients are exported from the oceans’ productive surface layer to the deep sea is a crucial parameter in models of the biological carbon pump. Based on >400 vertical flux observations of particulate organic carbon (POC) and nitrogen (PON) from the European Arctic Ocean we show the common assumption of constant C:N stoichiometry not to be met. Exported POC:PON ratios exceeded the classical Redfield atomic ratio of 6.625 in the entire region, with the largest deviation in the deep Central Arctic Ocean. In this part the mean exported POC:PON ratio of 9.7 (a:a) implies c. 40% higher carbon export compared to Redfield-based estimates. When spatially integrated, the potential POC export in the European Arctic was 10–30% higher than suggested by calculations based on constant POC:PON ratios. We further demonstrate that the exported POC:PON ratio varies regionally in relation to nitrate-based new production over geographical scales that range from the Arctic to the subtropics, being highest in the least productive oligotrophic Central Arctic Ocean and subtropical gyres. Accounting for variations in export stoichiometry among systems of different productivity will improve the ability of models to resolve regional patterns in carbon export and, hence, the oceans’ contribution to the global carbon cycle will be predicted more accurately.  相似文献   

2.
Root morphology and Zn2 uptake kinetics of the hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance were investigated using hydroponic methods and the radiotracer flux technique. The results indicate that root length, root surface area, and root volume of NHE decreased significantly with increasing Zn2 concentration in growth media, whereas the root growth of HE was not adversely affected, and was even promoted, by 500 μmol/L Zn2 . The concentrations of Zn2 in both ecotypes of S. alfredii were positively correlated with root length, root surface area and root volumes, but no such correlation was found for root diameter. The uptake kinetics for 65Zn2 in roots of both ecotypes of S. alfredii were characterized by a rapid linear phase during the first 6 h and a slower linear phase during the subsequent period of investigation. The concentration-dependent uptake kinetics of the two ecotypes of S. alfredii could be characterized by the Michaelis-Menten equation, with the Vmax for 65Zn2 influx being threefold greater in HE compared with NHE, indicating that enhanced absorption into the root was one of the mechanisms involved in Zn hyperaccumulation. A significantly larger Vmax value suggested that there was a higher density of Zn transporters per unit membrane area in HE roots.  相似文献   

3.
An array of four sediment traps and one current meter was deployed under a well-developed platelet layer for 15 days in the Drescher Inlet in the Riiser Larsen ice shelf, in February 1998. Traps were deployed at 10 m (just under the platelet layer), 112 m (above the thermocline), 230 m (below thermocline) and 360 m (close to sea floor). There was a substantial flux of particulate organic material out of the platelet layer, although higher amounts were collected in the traps either side of the thermocline. Material collected was predominantly composed of faecal pellets containing diatom species growing within the platelet layer. The size classes of these pellets suggest they derive from protists grazing rather than from larger metazoans. Sediment trap material was analysed for particulate organic carbon/nitrogen/phosphorus (POC/PON/POP) and '13CPOC (carbon isotopic composition of POC). These were compared with organic matter in the overlying platelet layer and the water column. In turn, the biogeochemistry of the platelet layer and water column was investigated and the organic matter characteristics related to inorganic nutrients (nitrate, nitrite, ammonium, silicate, phosphate), dissolved organic carbon/nitrogen (DOC/DON), pH, dissolved inorganic carbon (DIC), oxygen and '13CDIC (carbon isotopic composition dissolved inorganic carbon).  相似文献   

4.
王韦韦  吕茂奎  胥超  陈光水 《生态学报》2023,43(18):7474-7484
揭示亚热带森林土壤有机碳流失规律是制定相应措施以巩固和维持森林生态系统碳汇的关键。然而已有研究存在的监测对象单一、频率过低、时间过短等问题,导致对这一规律的认识仍然不足。选择亚热带典型的常绿阔叶林和杉木人工林为研究对象,每次降雨过后监测其径流量、泥沙量,分析径流和泥沙中的可溶性有机碳(Dissolved organic carbon,DOC)含量以及颗粒有机碳(Particle organic carbon,POC)含量。旨在比较两种森林DOC和POC流失量的差异,并分析二者与降雨量、降雨强度、5 min最大雨强和降雨侵蚀力四个降雨特征值的关联。拟验证以下两个问题:(1)杉木人工林的DOC和POC流失量是否高于常绿阔叶林;(2)降雨侵蚀力对DOC和POC的解释是否优于降雨量、降雨强度和5 min最大雨强。研究结果发现常绿阔叶林径流量、泥沙量、径流水中DOC浓度和POC浓度、DOC和POC流失量均显著高于杉木人工林。回归分析表明常绿阔叶林和杉木人工林DOC和POC流失量与降雨量、降雨强度和降雨侵蚀力呈显著的线性或幂函数相关,其中降雨量与DOC和POC流失量之间的拟合关系最优。常绿阔叶林产流和产沙量高于杉木人工林可能与前者的林下植被生物量较低有关,前者径流水中DOC浓度和POC浓度较高可归因于其较高的总生物量和土壤有机碳含量。在未来森林经营过程中应合理管理林下植被,尽量减少和避免林下植被的抚育伐,从而能够降低有机碳的水土流失,达到巩固和维持森林碳汇的目的。在未来气候变暖导致降水变化背景下,利用降雨量作为预测指标能够较好评估我国亚热带森林有机碳流失的风险。  相似文献   

5.
不同生态环境野生大豆的结构比较研究   总被引:4,自引:0,他引:4  
对生长在不同生态环境的蝶形花科Fabaceae 大豆属Glycine 的两个野生大豆G.soja 品系进行了扫描电镜观察及比较研究.结果表明,生长在盐渍生态环境的野生大豆茎和叶体表都具有盐腺,盐腺圆球型,基部有一个小柄,着生在盐生野生大豆茎、叶表皮外切向壁的胞间层处.幼嫩的盐腺靠泌盐孔泌盐,成熟的盐腺靠整体破碎释盐.而生长在黑土地生态环境的野生大豆的茎和叶外切向壁未发现有泌盐的盐腺,其茎叶的表皮都呈现出平滑状态.因此两种不同生态环境的同科同属植物在微观结构上显示出明显差异.  相似文献   

6.
It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within eddies, we present here results from a sediment trap mooring deployed within the path of cyclonic eddies generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, eddies are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2–4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with eddies was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic eddies, however, would enhance carbon export below 1000 m depth during the summer stratification period, when eddies are more intense and frequent, highlighting the important role of eddies and their different biological communities on the regional carbon cycle.  相似文献   

7.
降水变率对森林土壤有机碳组分与分布格局的影响   总被引:1,自引:0,他引:1  
2006年12月-2008年6月,通过加倍降水、自然降水和去除降水3种处理的人工控制试验,研究了降水变率改变对南亚热带不同演替阶段的季风常绿阔叶林、针阔叶混交林和马尾松针叶林土壤有机碳组分与空间分布格局的影响.结果表明:在3种降水强度条件下,相同森林类型的同一层次土壤总有机碳(TOC)含量差异不显著(P>0.05);去除降水处理下土壤表层(0~10 cm)颗粒有机碳(POC)和轻组有机碳(LFOC)含量有明显的积累趋势,加倍降水和自然降水处理下增加了POC、LFOC向下层土壤(10~20 cm、20~30 cm、30~50 cm)的运输;去除降水处理下,马尾松林土壤易氧化有机碳(ROC)含量显著高于降水处理(P<0.05);演替早期森林土壤的POC、ROC、LFOC占总有机碳的比例大于演替后期土壤,不利于土壤有机碳的存埋.森林土壤总有机碳含量变化缓慢,而其活性有机碳组分(POC、LFOC、ROC)对降水变率改变的响应更敏感.  相似文献   

8.
Export of autochthonously produced particulate organic carbon (POC) is a globally important mechanism for sequestering carbon in the deep sea. The role of microbial hydrolytic activity in attenuating POC flux is generally understudied, and particularly complex on Arctic continental shelves influenced by other sources of POC. To evaluate this role, we used fluorogenic substrate analogs to measure extracellular enzyme activity (EEA) associated with particle size fractions considered suspended (1–70 μm) and sinking (>70 μm). Samples were collected by in situ filtration at depths of 25–100 m at ten stations (156–1,142 m deep) in the Amundsen Gulf and Beaufort Sea in June–July, 2008, during the Circumpolar Flaw Lead project. Significant positive correlations observed between EEA and both chlorophyll a and δ13CPOC suggest that EEA is elevated in waters dominated by marine-derived POC. No difference in bulk EEA was observed between size fractions, but POC- and cell-specific EEA was significantly elevated on sinking aggregates. Calculations show that 2–44% of carbon retention in surface waters could be attributed to mobilization by enzymes associated with sinking aggregates, and up to 57% if enzymes associated with suspended particles are included. Model results suggest that microbial attenuation of POC below the euphotic zone is a quantitatively important mechanism for carbon loss, especially when particles are sinking slowly. The role of microbes in attenuating POC flux on Arctic shelves appears to have been underestimated previously and may become increasingly important if climate warming brings increased marine productivity.  相似文献   

9.
The differential impact of microbial sulfate reduction and methanogenesis on the mineralization of particulate organic carbon (POC) in warm monomictic Lake Kinneret (LK), Israel was studied during three consecutive lake cycles. The hypolimnetic accumulation of total sulfide and dissolved methane was examined in relation to the physical forcing of the water column and the settling flux of particulate matter. With the on-set of thermal stratification in spring, both solutes increased concomitantly with the depletion of oxygen, first in the benthic boundary layer, followed by the upper hypolimnion. Methane production was restricted to the sediments as emphasized by the persistently linear concentration gradient in the hypolimnion. Sulfate reduction occurred both in the sediments and the water column as revealed by the hypolimnetic distribution of sulfide and recurring metalimnetic sulfide peaks. Annual differences in the accumulation pattern of both solutes appeared to be primarily linked to the settling flux of POC and the length of the stratified season. Relatively lower hypolimnetic concentrations of dissolved methane during the stratified season of 2000 coincided with increased ebullition of gaseous methane, likely as the result of a nearly a 2 m drop in the lake level. Overall, sulfate reduction accounted for more than 60% of the POC settling flux, a finding that differs from similar studies made in temperate lakes where methanogenesis was shown to be the primary mode of terminal carbon mineralization. Intensive organic carbon turnover at the sediment water interface and comparatively high sulfate concentrations in LK are the most likely reason.  相似文献   

10.
The rice stem borer, Chilo suppressalis, is divided into at least two ecotypes in Japan, the Shonai ecotype (SN) which is distributed in the northern part of Japan, and the Saigoku ecotype (SG) which is distributed in the southwestern region. Cold hardiness is positively correlated with the level of glycerol in both ecotypes. To investigate whether ecological distribution affects glycerol accumulation and cold hardiness development in these two ecotypes, overwintering larvae of the SN and SG ecotypes were concurrently exposed to the Shonai district. Obvious differences in the progress of glycerol accumulation and cold hardiness development in SN and SG larvae were found in early winter in the Shonai district. The levels of glycerol content and cold hardiness were low in October and high in January in both ecotypes, but those levels were different within this period (November and December) between ecotypes; the levels in SN larvae quickly reached their maximum, whereas, in SG larvae levels increased slowly. Under controlled conditions, the effect of the period of acclimation at 10 degrees C and subsequent low-temperature (5 degrees C) exposure on glycerol accumulation was investigated. These results indicated that glycerol accumulation in SN was stimulated by the progression of diapause termination, whereas a higher cumulative effect on glycerol production in SG was found when diapause was in a deep state.  相似文献   

11.
Root morphology and Zn^2+ uptake kinetics of the hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance were investigated using hydroponic methods and the radiotracer flux technique. The results indicate that root length, root surface area, and root volume of NHE decreased significantly with increasing Zn^2+ concentration in growth media, whereas the root growth of HE was not adversely affected, and was even promoted, by 500μmol/L Zn^2+. The concentrations of Zn^2+ in both ecotypes of S. alfredii were positively correlated with root length, root surface area and root volumes, but no such correlation was found for root diameter. The uptake kinetics for ^65Zn^2+ in roots of both ecotypes of S. alfredii were characterized by a rapid linear phase during the first 6 h and a slower linear phase during the subsequent period of investigation. The concentration-dependent uptake kinetics of the two ecotypes of S. alfredii could be characterized by the Michaelis-Menten equation, with the Vmax for ^65Zn^2+ influx being threefold greater in HE compared with NHE, indicating that enhanced absorption into the root was one of the mechanisms involved in Zn hyperaccumulation. A significantly larger Vmax value suggested that there was a higher density of Zn transporters per unit membrane area in HE roots.  相似文献   

12.
不同土地利用类型下土壤活性有机碳库的变化   总被引:18,自引:0,他引:18  
宇万太  马强  赵鑫  周桦  李建东 《生态学杂志》2007,26(12):2013-2016
分析了中国科学院沈阳生态试验站不同土地利用类型长期定位试验土壤0~40cm活性有机碳含量,结果表明:0~20cm土层内荒地土壤有机碳、易氧化碳、微生物生物量碳、溶解性有机碳和轻组有机碳含量高于割草地和裸地,而割草地颗粒有机碳含量略高于荒地;在20~40cm土层,割草地土壤有机碳、易氧化碳和颗粒有机碳含量较高,而荒地微生物量碳、溶解性有机碳和轻组有机碳含量较高。不同土地利用类型土壤活性有机碳含量均随着土层加深而递减。土壤微生物量碳、溶解性有机碳和轻组有机碳的分配比例为荒地>割草地>裸地,易氧化碳和颗粒有机碳的分配比例为割草地>荒地>裸地。土壤活性有机碳的分配比例随土层加深而下降,但溶解性有机碳的分配比例变化趋势相反。  相似文献   

13.
2010年夏季珠江口海域颗粒有机碳的分布特征及其来源   总被引:5,自引:1,他引:5  
刘庆霞  黄小平  张霞  张凌  叶丰 《生态学报》2012,32(14):4403-4412
于2010年8月对珠江口海域20个站位的颗粒有机碳(POC)进行采样,分析了POC的空间分布特征,讨论了POC与环境因子之间的关系,并利用碳稳定同位素(δ13C)分析了POC的来源及其贡献率。结果显示,研究区域POC的浓度范围98.5—1929.8μg/L,平均浓度541.9μg/L,空间分布总体呈现自北部海域向中部海域逐渐降低,中部海域至南部海域又逐渐升高,底层大于表层的特点。总悬浮颗粒物、叶绿素a、水动力是影响POC空间分布的重要原因。研究区域总悬浮颗粒物δ13C值的变化范围-27.05‰—-21.03‰,平均为-24.57‰,反映出珠江口海域颗粒有机碳为陆源和水生源混合来源,其分布呈现沿盐度梯度自口门内向口门外逐渐递增,底层高于表层的特点。陆源输入和海洋生物生产是影响δ13C值分布的主要原因。运用二元混合模型计算得知,珠江口北部和中部海域POC以陆源有机碳为主,贡献率平均为64%;南部海域POC以水生源有机碳为主,贡献率平均为68%。与20多年前相比,POC的分布特征与来源已经发生了改变,珠江口海域含沙量减少与营养盐含量增加可能是导致POC组成发生变化的主要原因。  相似文献   

14.
The export of carbon through the biological pump from the surface to the deep ocean has a direct influence on the removal of CO2 from the atmosphere. This is because the carbon is sequestered for only a few days to months in the surface while the carbon removed from the surface to deep waters takes hundreds of years to re-enter the atmosphere. The highest dissolved inorganic carbon (DIC) is expected in the deep waters of the North Pacific due to longer age of waters. On contrary, the higher deep water DIC is found in the northern Indian Ocean than elsewhere in the World Oceans. The sinking fluxes of particulate organic (POC) and inorganic carbon (CaCO3) are found to be the highest in the northern Indian Ocean. The rates of bacterial respiration, organic carbon regeneration and inorganic carbon dissolution are also found to be the highest in the northern Indian Ocean than elsewhere. A most efficient biological pump appears to be operating in the northern Indian Ocean that transports surface-derived organic/inorganic carbon to deeper layers where it is converted and stored for longer times in dissolved inorganic form.  相似文献   

15.
川西沿海拔梯度典型植被类型土壤活性有机碳分布   总被引:11,自引:0,他引:11  
研究土壤活性有机碳含量及分配比例是揭示土壤碳库周转及调控机理的重要途径,通过利用高锰酸钾氧化法获得易氧化有机碳、湿筛法获得颗粒有机碳和密度分离法获得轻组有机碳3项指标探讨沿海拔梯度不同植被类型间(山地常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林、针阔混交林、暗针叶林)土壤活性有机碳含量差异及调控因子,结果表明:随土层加深,土壤颗粒和轻组有机碳含量及分配比例均降低,土壤易氧化有机碳含量降低而分配比例保持较稳定水平。高海拔植被类型具有较高的土壤活性有机碳含量和分配比例。不同活性有机碳含量之间均呈显著线性相关(P0.05)表明活性有机碳起源的类似。活性有机碳与土壤粘粒+粉粒含量百分比呈显著负相关(P0.05)表明活性有机碳趋向分布于土壤大团聚体当中。年均温与不同植被类型间表层土壤活性有机碳含量和分配比例成负相关趋势,但可能由于取样点较少的缘故而在统计上不显著。年均温与土壤非保护性有机碳向保护性有机碳的转化速率常数(K)接近于显著负相关(P=0.062)。  相似文献   

16.
17.
Deep‐water benthic communities in the ocean are almost wholly dependent on near‐surface pelagic ecosystems for their supply of energy and material resources. Primary production in sunlit surface waters is channelled through complex food webs that extensively recycle organic material, but lose a fraction as particulate organic carbon (POC) that sinks into the ocean interior. This exported production is further rarefied by microbial breakdown in the abyssal ocean, but a residual ultimately drives diverse assemblages of seafloor heterotrophs. Advances have led to an understanding of the importance of size (body mass) in structuring these communities. Here we force a size‐resolved benthic biomass model, BORIS, using seafloor POC flux from a coupled ocean‐biogeochemistry model, NEMO‐MEDUSA, to investigate global patterns in benthic biomass. BORIS resolves 16 size classes of metazoans, successively doubling in mass from approximately 1 μg to 28 mg. Simulations find a wide range of seasonal responses to differing patterns of POC forcing, with both a decline in seasonal variability, and an increase in peak lag times with increasing body size. However, the dominant factor for modelled benthic communities is the integrated magnitude of POC reaching the seafloor rather than its seasonal pattern. Scenarios of POC forcing under climate change and ocean acidification are then applied to investigate how benthic communities may change under different future conditions. Against a backdrop of falling surface primary production (?6.1%), and driven by changes in pelagic remineralization with depth, results show that while benthic communities in shallow seas generally show higher biomass in a warmed world (+3.2%), deep‐sea communities experience a substantial decline (?32%) under a high greenhouse gas emissions scenario. Our results underscore the importance for benthic ecology of reducing uncertainty in the magnitude and seasonality of seafloor POC fluxes, as well as the importance of studying a broader range of seafloor environments for future model development.  相似文献   

18.
Respiration for maintenance and growth ofReynoutria japonica ecotypes from altitudes of 700 and 2420 m on Mt Fuji were measured in two controlled thermal conditions. The maintenance respiration of the high-altitude ecotype at both 15 and 25°C was significantly (1.7-fold) higher than that of the low-altitude ecotype, whereas growth respiration was independent of both ecotype and temperature. The temperature coefficient (Q10) of the maintenance respiration was about 1.9 in both ecotypes. The results show that there is ecotypic differentiation in the performance of maintenance respiration. It is suggested that the high maintenance respiration of the high-altitudeR. japonica ecotype is advantageous in severe upland environments but disadvantageous in a warm lowland climate in terms of carbon economy.  相似文献   

19.
The effects of cold acclimation of two ecotypes (Antarctic and Andes) of Colobanthus quitensis (Kunth) Bartl. Caryophyllaceae on their photosynthetic characteristics and performance under high light (HL) were compared. Non-acclimated plants of the Antarctic ecotype exhibited a higher (34%) maximal rate of photosynthesis than the Andes ecotype. In cold-acclimated plants the light compensation point was increased. Dark respiration was significantly increased during the exposure to 4 degrees C in both ecotypes. Cold-acclimated Antarctic plants showed higher Phi(PSII) and qP compared with the Andes ecotype. In addition, the Antarctic ecotype exhibited higher heat dissipation (NPQ), especially in the cold-acclimated state, which was mainly associated with the fast relaxing component of non-photochemical quenching (NPQ(F)). By contrast, the Andes ecotype exhibited a lower NPQ(F) and a significant increase in the slowly relaxing component (NPQ(s)) at low temperature and HL, indicating higher sensitivity to low temperature-induced photoinhibition. Although the xanthophyll cycle was fully operational in both ecotypes, cold-acclimated Antarctic plants exposed to HL exhibited higher epoxidation state of the xanthophyll cycle pigments (EPS) compared with the cold-acclimated Andes ecotype. Thus, the photosynthetic apparatus of the Antarctic ecotype operates more efficiently than that of the Andes one, under a combination of low temperature and HL. The ecotype differences are discussed in relation to the different climatic conditions of the two Colobanthus.  相似文献   

20.
The deep sea comprises more than 90% of the ocean; therefore, understanding the controlling factors of biodiversity in the deep sea is of great importance for predicting future changes in the functioning of the ocean system. Consensus has recently been increasing on two plausible factors that have often been discussed as the drivers of deep‐sea species richness in the contexts of the species‐energy and physiological tolerance hypotheses: (i) seafloor particulate organic carbon (POC) derived from primary production in the euphotic zone and (ii) temperature. Nonetheless, factors that drive deep-sea biodiversity are still actively debated potentially owing to a mirage of correlations (sign and magnitude are generally time dependent), which are often found in nonlinear, complex ecological systems, making the characterization of causalities difficult. Here, we tested the causal influences of POC flux and temperature on species richness using long-term palaeoecological datasets derived from sediment core samples and convergent cross mapping, a numerical method for characterizing causal relationships in complex systems. The results showed that temperature, but not POC flux, influenced species richness over 103–104-year time scales. The temperature–richness relationship in the deep sea suggests that human-induced future climate change may, under some conditions, affect deep-sea ecosystems through deep-water circulation changes rather than surface productivity changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号