首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integration, expression, and stability of the Respiratory Syncytial Virus (RSV)-F protein was analyzed in a T3 generation of transgenic cherry tomato, Solanum lycopersicum L. cv. Swifty Belle, plants. Expression of the RSV-F antigen, under the control of the fruit-specific promoter E-8, was investigated in T3 plants derived from a transgenic line, identified as #120. Transgene integration of the RSV-F gene in the T3 generation was initially determined by polymerase chain reaction (PCR). PCR analysis from line 120-7-2 revealed that all T3 plants were homozygous for the transgene; whereas, line 120-6-4 showed segregation for the transgene. Enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of RSV-F protein in these plants, and protein levels ranged from 0–22 μg/g of fresh weight, with an average of ~3 μg/g fresh weight. Southern blot analysis of the highest expressing plants revealed presence of a single copy of the RSV-F transgene in these plants.  相似文献   

2.
3.
A cytokinin biosynthetic gene encoding isopentenyl transferase (ipt) was cloned with its native promoter from Agrobacterium tumefaciens and introduced into tobacco plants. Indolebutyric acid was applied in rooting medium and morphologically normal transgenic tobacco plants were regenerated. Genetic analysis of self-fertilized progeny showed that a single copy of intact ipt gene had been integrated, and T2 progeny had become homozygous for the transgene. Stable inheritance of the intact ipt gene in T2 progeny was verified by Southern hybridization. Northern blot hybridization revealed that the expression of this ipt gene was confined in leaves and stems but undetectable in roots of the transgenic plants. Endogenous cytokinin levels in the leaves and stems of the transgenic tobaccos were two to threefold higher than that of control, but in roots, both the transgenic and control tobaccos had similar cytokinin levels. The elevated cytokinin levels in the transgenic tobacco leaves resulted in delayed leaf senescence in terms of chlorophyll content without affecting the net photosynthetic rate. The root growth and morphology of the plant were not affected in the transgenic tobacco.  相似文献   

4.
Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of enteric diseases affecting livestock and humans. Edible transgenic plants producing E. coli fimbrial subunit proteins have the potential to vaccinate against these diseases, but have not reached their full potential as a renewable source of oral vaccines due in part to insufficient levels of recombinant protein accumulation. Previously, we reported that cytosol targeting of the E. coli K99 fimbrial subunit antigen resulted in FanC accumulation to ∼0.4% of total soluble protein in soybean leaves (Piller et al. in Planta 222:6–18, 2005). In this study, we report on the subcellular targeting of FanC to chloroplasts. Twenty-two transgenic T1 progeny derived from seven individual T0 transformation events were characterized, and 17 accumulated transgenic FanC. All of the characterized events displayed relatively low T-DNA complexity, and all exhibited proper targeting of FanC to the chloroplast. Accumulation of chloroplast-targeted FanC was ∼0.08% of total soluble leaf protein, or ∼5-fold less than cytosol-targeted FanC. Protein analysis of leaves at various stages of maturity suggested stability of chloroplast-targeted FanC throughout leaf maturation. Furthermore, mice immunized intraperitoneally with protein extract derived from transgenic leaves expressing chloroplast-targeted FanC developed significant antibody titers against FanC. This is the first report of subcellular targeting of a vaccine subunit antigen in soybean.  相似文献   

5.
Transgenics for the expression of β-carotene biosynthetic pathway in the endosperm were developed in indica rice background by introducing phytoene synthase (psy) and phytoene desaturase (crtI) genes through Agrobacterium-mediated transformation, employing non-antibiotic positive selectable marker phosphomannose isomerase (pmi). Twenty-seven transgenic lines were characterized for the structural organization of T-DNA inserts and the expression of transgenes in terms of total carotenoid and β-carotene accumulation in the endosperm. Ten lines were also studied for the inheritance of transgenic loci to the T1 progenies. Copy number and sites of integration of the transgenes ranged from one to four. Almost 50% of the transgenic lines showed rearrangement of T-DNA inserts. However, most of the rearrangements occurred in the crtI expression cassette which is adjacent to the right T-DNA border. Differences in copy numbers of psy and crtI were also observed indicating partial T-DNA integration. Beyond T-DNA border transfer was also detected in 25% of the lines. Fifty percent of the lines studied showed single Mendelian locus inheritance, while two lines showed bi-locus inheritance in the T1 progenies. Some of the lines segregating in 3:1 ratio showed two sites of integration on restriction digestion analysis indicating that the T-DNA insertion sites were tightly linked. Three transgenic lines showed nonparental types in the segregating progenies, indicating unstable transgenic locus. Evidences from the HPLC analysis showed that multiple copies of transgenes had a cumulative effect on the accumulation of carotenoid in the endosperm. T1 progenies, in general, accumulated more carotenoids than their respective parents, the highest being 6.77 μg/g of polished seeds. High variation in the carotenoid accumulation was observed within the T1 progenies which could be attributed to the variation in the structural organization and expression of transgenes, minor variations in the genetic background within the progeny plants, or differences in the plant microenvironments. The study identified lines worthy of further multiplication and breeding based on transgene structural integrity in the segregating progeny and high expression levels in terms of the β-carotene accumulation.  相似文献   

6.
Anther culture–derived haploid embryos were used as explants for Agrobacterium‐mediated genetic transformation of bread wheat (Triticum aestivum L. cv CPAN1676) using barley HVA1 gene for drought tolerance. Regenerated plantlets were checked for transgene integration in T0 generation, and positive transgenic haploid plants were doubled by colchicine treatment. Stable transgenic doubled haploid plants were obtained, and transgene expression was monitored till T4 generation, and no transgene silencing was observed over the generations. Doubled haploid transgenic plants have faster seed germination and seedling establishment and show better drought tolerance in comparison with nontransgenic, doubled haploid plants, as measured by per cent germination, seedling growth and biomass accumulation. Physiological evaluation for abiotic stress by assessing nitrate reductase enzyme activity and plant yield under post‐anthesis water limitation revealed a better tolerance of the transgenics over the wild type. This is the first report on the production of double haploid transgenic wheat through anther culture technique in a commercial cultivar for a desirable trait. This method would also be useful in functional genomics of wheat and other allopolyploids of agronomic importance.  相似文献   

7.
Commercial production of aprotinin in transgenic maize seeds   总被引:7,自引:0,他引:7  
The development of genetic transformation technology for plants has stimulated an interest in using transgenic plants as a novel manufacturing system for producing different classes of proteins of industrial and pharmaceutical value. In this regard, we report the generation and characterization of transgenic maize lines producing recombinant aprotinin. The transgenic aprotinin lines recovered were transformed with the aprotinin gene using the bar gene as a selectable marker. The bar and aprotinin genes were introduced into immature maize embryos via particle bombardment. Aprotinin gene expression was driven by the maize ubiquitin promoter and protein accumulation was targeted to the extracellular matrix. One line that showed a high level of aprotinin expression was characterized in detail. The protein accumulates primarily in the embryo of the seed. Southern blot analysis showed that the line had at least 20 copies of the bar and aprotinin genes. Further genetic analysis revealed that numerous plants derived from this transgenic line had a large range of levels of expression of the aprotinin gene (0–0.069%) of water-soluble protein in T2 seeds. One plant lineage that showed stable expression after 4 selfing generations was recovered from the parental transgenic line. This line showed an accumulation of the protein in seeds that was comparable to the best T2 lines, and the recombinant aprotinin could be effectively recovered and purified from seeds. Biochemical analysis of the purified aprotinin from seeds revealed that the recombinant aprotinin had the same molecular weight, N-terminal amino acid sequence, isoelectric point, and trypsin inhibition activity as native aprotinin. The demonstration that the recombinant aprotinin protein purified from transgenic maize seeds has biochemical and functional properties identical to its native counterpart provides a proof-of-concept example for producing new generation products for the pharmaceutical industry.  相似文献   

8.
以导入大肠杆菌过氧化氢酶基因KatE的T3代转基因棉花为供试材料,经卡那霉素检测和PCR鉴定,将筛选出的阳性转基因植株与对照棉花进行整个生育期的持续水分胁迫处理直至收获,比较材料间的生理生化指标的差异,鉴定转基因植株的耐旱能力。结果显示:(1)干旱胁迫持续至初蕾期时,转基因棉花与对照植株间各项抗旱生理指标差异均未达到显著水平。(2)水分胁迫持续至盛蕾和盛花期时,转基因棉花叶片相对含水量、光系统Ⅱ最大光化学效率(Fv/Fm)、CAT活性,以及叶片的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均显著或极显著高于对照植株,叶绿素含量也都明显高于对照植株。干旱胁迫持续至吐絮期时,转基因棉花的株高、果枝数和铃数均显著或极显著高于对照植株,且转基因棉花和对照的籽棉产量分别比正常灌溉处理降低57.5%和60.1%,全生育期的水分胁迫严重影响了棉花籽棉产量,但转基因棉花的籽棉产量仍显著高于对照。研究表明,在新疆石河子当地自然降水(干旱胁迫)条件下,转KatE基因棉花表现出了较好的生理和生长优势,KatE基因有助于提高棉花的抗旱性。  相似文献   

9.
10.
We present a simple and rapid method for screening second-generation transgenic rice plants (T1) to identify homozygous plants. The plasmid (pfd11) used for rice transformation contains a partially deleted cytochrome c gene (cyc) for comparing with the endogenous cyc for copy number. After polymerase chain reaction (PCR) amplification of a segment of the cyc in transgenic rice DNA followed by agarose gel electrophoresis, two specific bands are obtained. The upper band represents the endogenous cyc, and the lower band represents the partially deleted cyc in the transgene. The first-generation plants (T0) that harbor a single copy of the transgene are selected based on the fact that the density of the lower band is half as dense as the upper band. Next, only plants harboring a single copy of the transgene are advanced to the second generation (T1). The same PCR procedure is used again, and homozygous T1 plants are easily identified from samples in which the intensity of the two bands is the same.  相似文献   

11.
An efficient transformation system for rice was established by co-cultivating calli, derived from 21-day-old scutellum, with Agrobacterium tumefaciens cells (OD600 = 0.04), maintained on filter paper, moistened with 4 mL of a medium, and supplemented with 400 μM acetosyringone, for a period of 2 days. Presence of the transgene was confirmed by polymerase chain reaction, and stable integration and copy number of the transgene were determined by Southern blot analysis. Among seven plants analyzed, six possessed single T-DNA integration events, while one plant was found to have two integrated copies of the T-DNA. A total of 45 T0 plants were grown in the greenhouse to obtain the T1 generation. T1 plants evaluated for presence of the transgene and for response to inoculation with the bacterial leaf blight pathogen, Xanthomonas oryzae pv. Oryzae, exhibited Mendelian segregation (3:1) for the transgene as well as enhanced resistance to bacterial blight  相似文献   

12.
We report on generation of marker-free (‘clean DNA’) transgenic rice (Oryza sativa), carrying minimal gene-expression-cassettes of the genes of interest, and evaluation of its resistance to yellow stem borerScirpophaga incertulas (Lepidoptera: Pyralidae). The transgenicindica rice harbours a translational fusion of 2 differentBacillus thuringiensis (Bt) genes, namelycry1B-1Aa, driven by the green-tissue-specific phosphoenol pyruvate carboxylase (PEPC) promoter. Mature seed-derived calli of an eliteindica rice cultivar Pusa Basmati-1 were co-bombarded with gene-expression-cassettes (clean DNA fragments) of the Bt gene and the markerhpt gene, to generate marker-free transgenic rice plants. The clean DNA fragments for bombardment were obtained by restriction digestion and gel extraction. Through biolistic transformation, 67 independent transformants were generated. Transformation frequency reached 3.3%, and 81% of the transgenic plants were co-transformants. Stable integration of the Bt gene was confirmed, and the insert copy number was determined by Southern analysis. Western analysis and ELISA revealed a high level of Bt protein expression in transgenic plants. Progeny analysis confirmed stable inheritance of the Bt gene according to the Mendelian (3∶1) ratio. Insect bioassays revealed complete protection of transgenic plants from yellow stem borer infestation. PCR analysis of T2 progeny plants resulted in the recovery of up to 4% marker-free transgenic rice plants.  相似文献   

13.
A novel synthetic cry2A* gene was introduced into the elite indica rice restorer line Minghui 63 by Agrobacterium-mediated transformation. A total of 102 independent transformants were obtained. Among them, 71 transformants were positive cry2A* plants according to PCR analysis. Four highly insect-resistant lines with single-copy insertion (designated as 2A-1, 2A-2, 2A-3, and 2A-4) were selected based on field assessment and Southern blot analysis in the T1 generation. All four transgenic lines showed Mendelian segregation by seed germination on 1/2 MS medium containing Basta. Homozygous transgenic plants were selected according to germination ratio (100%) in the T2 generation. Cry2A* protein concentrations were determined in homozygous transgenic lines, their derived hybrids, and their backcross offspring. The Cry2A* protein concentrations of four homozygous transgenic lines ranged from 9.65 to 12.11 μg/g of leaf fresh weight. There was little variation in the hybrids and backcross offspring. Insect bioassays were conducted in both the laboratory and field. All four transgenic lines were significantly resistant to lepidopteran rice pests. These cry2A* transgenic lines can be used to produce insect-resistant hybrids and serve as a resistant source for the development of two-toxin Bt rice.  相似文献   

14.
Transgenic rice was developed from ‘Swarna’, the most popular indica rice cultivar (Oryza sativa L.) in South East Asia, with a potato chymotrypsin inhibitor gene (pin2) through Agrobacterium-mediated transformation. Four out of nine primary transgenic plants had a single-copy T-DNA insertion while other five plants had two copies. Mendelian pattern of inheritance of the transgene (pin2) was observed in the T1 generation progeny plants. Whole plant bioassays conducted at both vegetative and reproductive stages and cut stem assays showed enhanced levels of resistance of transgenic rice against yellow stem borer. The transgenic rice lines with plant derived proteinase inhibitor genes would develop into resistant cultivars to fit into resistance breeding strategies as an important component of integrated pest management in rice.  相似文献   

15.

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is being rapidly developed for mutagenesis in higher plants. Ideally, foreign DNA introduced by this system is removed in the breeding of edible crops and vegetables. Here, we report an efficient generation of Cas9-free mutants lacking an allergenic gene, Gly m Bd 30K, using biolistic transformation and the CRISPR/Cas9 system. Five transgenic embryo lines were selected on the basis of hygromycin resistance. Cleaved amplified polymorphic sequence analysis detected only two different mutations in e all of the lines. These results indicate that mutations were induced in the target gene immediately after the delivery of the exogenous gene into the embryo cells. Soybean plantlets (T0 plants) were regenerated from two of the transgenic embryo lines. The segregation pattern of the Cas9 gene in the T1 generation, which included Cas9-free plants, revealed that a single copy number of transgene was integrated in both lines. Immunoblot analysis demonstrated that no Gly m Bd 30K protein accumulated in the Cas9-free plants. Gene expression analysis indicated that nonsense mRNA decay might have occurred in mature mutant seeds. Due to the efficient induction of inheritable mutations and the low integrated transgene copy number in the T0 plants, we could remove foreign DNA easily by genetic segregation in the T1 generation. Our results demonstrate that biolistic transformation of soybean embryos is useful for CRISPR/Cas9-mediated site-directed mutagenesis of soybean for human consumption.

  相似文献   

16.
Rice chitinase (chi11) and tobacco osmotin (ap24) genes, which cause disruption of fungal cell wall and cell membrane, respectively, were stacked in transgenic rice to develop resistance against the sheath blight disease. The homozygous marker-free transgenic rice line CoT23 which harboured the rice chi11 transgene was sequentially re-transformed with a second transgene ap24 by co-transformation using an Agrobacterium tumefaciens strain harbouring a single-copy cointegrate vector pGV2260∷pSSJ1 and a multi-copy binary vector pBin19∆nptII-ap24 in the same cell. pGV2260∷pSSJ1 T-DNA carried the hygromycin phosphotransferase (hph) and β-glucuronidase (gus) genes. pBin19∆nptII-ap24 T-DNA harboured the tobacco osmotin (ap24) gene. Co-transformation of the gene of interest (ap24) with the selectable marker gene (SMG, hph) occurred in 12 out of 18 T0 plants (67%). Segregation of hph from ap24 was accomplished in the T1 generation in one (line 11) of the four analysed co-transformed plants. The presence of ap24 and chi11 transgenes and the absence of the hph gene in the SMG-eliminated T1 plants of the line 11 were confirmed by DNA blot analyses. The SMG-free transgenic plants of the line 11 harboured a single copy of the ap24 gene. Homozygous, SMG-free T2 plants of the transgenic line 11 harboured stacked transgenes, chi11 and ap24. Northern blot analysis of the SMG-free plants revealed constitutive expression of chi11 and ap24. The transgenic plants with stacked transgenes displayed high levels of resistance against Rhizoctonia solani. Thus, we demonstrate the development of transgene-stacked and marker-free transgenic rice by sequential Agrobacterium-mediated co-transformation with the same SMG.  相似文献   

17.
The development of rapid and efficient strategies to generate selectable marker-free transgenic plants could help increase the consumer acceptance of genetically modified (GM) plants. To produce marker-free transgenic plants without conditional treatment or the genetic crossing of offspring, we have developed a rapid and convenient DNA excision method mediated by the Cre/loxP recombination system under the control of a −46 minimal CaMV 35S promoter. The results of a transient expression assay showed that −46 minimal promoter::Cre recombinase (−46::Cre) can cause the loxP-specific excision of a selectable marker, thereby connecting the 35S promoter and β-glucuronidase (GUS) reporter gene. Analysis of stable transgenic Arabidopsis plants indicated a positive correlation between loxP-specific DNA excision and GUS expression. PCR and DNA gel-blot analysis further revealed that nine of the 10 tested T1 transgenic lines carried both excised and nonexcised constructs in their genomes. In the subsequent T2 generation plants, over 30% of the individuals for each line were marker-free plants harboring the excised construct only. These results demonstrate that the −46::Cre fusion construct can be efficiently and easily utilized for producing marker-free transgenic plants.  相似文献   

18.
19.
Lettuce big-vein disease is caused by Mirafiori lettuce virus (MiLV), which is vectored by the soil-borne fungus Olpidium brassicae. A MiLV-resistant transgenic lettuce line was developed through introducing inverted repeats of the MiLV coat protein (CP) gene. Here, a detailed characterization study of this lettuce line was conducted by comparing it with the parental, non-transformed ‘Kaiser’ cultivar. There were no significant differences between transgenic and non-transgenic lettuce in terms of pollen fertility, pollen dispersal, seed production, seed dispersal, dormancy, germination, growth of seedlings under low or high temperature, chromatographic patterns of leaf extracts, or effects of lettuce on the growth of broccoli or soil microflora. A significant difference in pollen size was noted, but the difference was small. The length of the cotyledons of the transgenic lettuce was shorter than that of ‘Kaiser,’ but there were no differences in other morphological characteristics. Agrobacterium tumefaciens used for the production of transgenic lettuce was not detected in transgenic seeds. The transgenic T3, T4, and T5 generations showed higher resistance to MiLV and big-vein symptoms expression than the resistant ‘Pacific’ cultivar, indicating that high resistance to lettuce big-vein disease is stably inherited. PCR analysis showed that segregation of the CP gene was nearly 3:1 in the T1 and T2 generations, and that the transgenic T3 generation was homozygous for the CP gene. Segregation of the neomycin phosphotransferase II (npt II) gene was about 3:1 in the T1 generation, but the full length npt II gene was not detected in the T2 or T3 generation. The segregation pattern of the CP and npt II genes in the T1 generation showed the expected 9:3:3:1 ratio. These results suggest that the fragment including the CP gene and that including the npt II gene have been integrated into two unlinked loci, and that the T1 plant selected in our study did not have the npt II gene. DNA sequences flanking T-DNA insertions in the T2 generation were determined using inverse PCR, and showed that the right side of the T-DNA including the npt II gene had been truncated in the transgenic lettuce.  相似文献   

20.
We compared rice transgenic plants obtained by Agrobacterium-mediated and particle bombardment transformation by carrying out molecular analyses of the T0, T1 and T2 transgenic plants. Oryza sativa japonica rice (c.v. Taipei 309) was transformed with a construct (pWNHG) that carried genes coding for neomycin phosphotransferase (nptII), hygromycin phosphotransferase (Hygr), and -glucuronidase (GUS). Thirteen and fourteen transgenic lines produced via either method were selected and subjected to molecular analysis. Based on our data, we could draw the following conclusions. Average gene copy numbers of the three transgenes were 1.8 and 2.7 for transgenic plants obtained by Agrobacterium and by particle bombardment, respectively. The percentage of transgenic plants containing intact copies of foreign genes, especially non-selection genes, was higher for Agrobacterium-mediated transformation. GUS gene expression level in transgenic plants obtained from Agrobacterium-mediated transformation was more stable overall the transgenic plant lines obtained by particle bombardment. Most of the transgenic plants obtained from the two transformation systems gave a Mendelian segregation pattern of foreign genes in T1 and T2 generations. Co-segregation was observed for lines obtained from particle bombardment, however, that was not always the case for T1 lines obtained from Agrobacterium-mediated transformation. Fertility of transgenic plants obtained from Agrobacterium-mediated transformation was better. In summary, the Agrobacterium-mediated transformation is a good system to obtain transgenic plants with lower copy number, intact foreign gene and stable gene expression, while particle bombardment is a high efficiency system to produce large number of transgenic plants with a wide range of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号