首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tolerances of 20 Beauveria bassiana isolates derived from host insects worldwide to UV-B irradiation were assessed quantitatively in multi-dose bioassays. Conidial suspensions of the isolates smeared on glass slides were exposed to the gradient UV-B doses of 0.1–1.6 J cm−2 (D), which generated from 0.75 to 10.17 min irradiation of weighted 312-nm wavelength at 2.0–2.61 mW cm−2. Irradiated conidia were then incubated for 24 h at 25°C under saturated humidity. The ratio of germination at each dose over that in the blank control was defined as survival index (I s). For all isolates, the I s − D observations fit well with the survival model I s = 1/[1 + exp(a + bD)] (0.94 ≤ r 2 ≤ 0.99) generated widely spanned lethal doses of 0.154–0.928, 0.240–1.139, and 0.383–1.493 J cm−2 for their losses of 50%, 75%, and 95% viabilities, respectively. These were far below the solar UV-B dose of 2.439 J cm−2 measured in a sunny day during the summer. The large variation of UV-B tolerance among the isolates indicates a necessity to select UV-tolerant candidates for formulations applied to insect control during summer. The highly efficient bioassay method was developed to measure accurately the UV-B tolerances of fungal biocontrol agents as lethal doses.  相似文献   

2.
A superoxide dismutase (SOD) was characterized from Beauveria bassiana, a fungal entomopathogen widely applied to insect control. This 209-aa enzyme (BbSod2) showed no more than 71% sequence identity to other fungal Mn-SODs, sharing all conserved residues with the Mn-SOD family and lacking a mitochondrial signal. The SOD activity of purified BbSod2 was significantly elevated by Mn2+, suppressed by Cu2+ and Zn2+ but inhibited by Fe3+. Overexpressing the enzyme in a BbSod2-absent B. bassiana strain enhanced its SOD activity (107.2 ± 6.1 U mg−1 protein) by 4–10-fold in different transformants analyzed. The best BbSod2-transformed strain with the SOD activity of 1,157.9 ± 74.7 U mg−1 was 93% and 61% more tolerant to superoxide-generating menadione in both colony growth (EC50 = 2.41 ± 0.03 versus 1.25 ± 0.01 mM) and conidial germination (EC50 = 0.89 ± 0.06 versus 0.55 ± 0.07 mM), and 23% more tolerant to UV-B irradiation (LD50 = 0.49 ± 0.02 versus 0.39 ± 0.01 J cm−2). Its virulence to Spodoptera litura larvae was enhanced by 26% [LT50 = 4.5 (4.2–4.8) versus 5.7 (5.2–6.4) days]. Our study highlights for the first time that the Mn2+-cofactored, cytosolic BbSod2 contributes significantly to the virulence and stress tolerance of B. bassiana and reveals possible means to improving field persistence and efficacy of a fungal formulation by manipulating the antioxidant enzymes of a candidate strain.  相似文献   

3.
The effect of ultraviolet-B (UV-B) radiation on Antarctic phytoplankton has become an attractive ecological issue as a result of annual springtime ozone depletion. The effects of UV-B radiation on the growth and antioxidant enzymes were investigated using Antarctic sea ice microalgae Chlamydomonas sp. ICE-L as the material in this study. The results demonstrated that UV-B radiation could notably inhibit the growth, especially at high UV-B radiation intensity (70 μW cm−2). Malondialdehyde and O2 ·− content in ICE-L increased rapidly in early days (1–3 days) exposed to UV-B radiation enhancement, then decreased rapidly. In the stress of UV-B radiation enhancement, the superoxide dismutase, peroxidase and Catalase activities of 1–4 days in ICE-L were obviously higher than those in the control, and their activities became higher at high UV-B radiation intensity (70 μW cm−2). These enzymes activity of 7 days would kept stable at low UV-B radiation intensity (35 μW cm−2), but kept high level at high UV-B radiation intensity (70 μW cm−2). However, the ascorbate peroxidase activity in ICE-L kept stable under the stress of UV-B radiation enhancement. The above experimental results indicated that the antioxidant enzyme system played an important role in the adaptation of Antarctic ice microalgae under the UV-B radiation change of Antarctic ecosystems.  相似文献   

4.
Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.  相似文献   

5.
《Fungal biology》2020,124(8):714-722
We investigated the comparative susceptibility to heat and UV-B radiation of blastospores and aerial conidia of Metarhizium spp. (Metarhizium robertsii IP 146, Metarhizium anisopliae s.l. IP 363 and Metarhizium acridum ARSEF 324) and Beauveria bassiana s.l. (IP 361 and CG 307). Conidia and blastospores were produced in solid or liquid Adámek-modified medium, respectively, and then exposed to heat (45 ± 0.2 °C) in a range of 0 (control) to 360 min; the susceptibility of fungal propagules to heat exposures was assessed to express relative viability. Similarly, both propagules of each isolate were also exposed to a range of 0 (control) to 8.1 kJ m−2 under artificial UV-B radiation. Our results showed that fungal isolates, propagule types and exposure time or dose of the stressor source play critical roles in fungal survival challenged with UV-B and heat. Conidia of ARSEF 324, IP 363, IP 146 and IP 361 exposed to heat survived significantly longer than their blastospores, except for blastospores of CG 307. Conidia and blastospores of IP 146 and IP 363 were equally tolerant to UV-B radiation. We claim that blastospores of certain isolates may be promising candidates to control arthropod pests in regions where heat and UV-B are limiting environmental factors.  相似文献   

6.
The effect of low doses of UV-A (320–400 nm) and UV-B (280–320 nm) radiation on photosynthetic activities inPhaseolus mungo L. was investigated under field condition. Supplementation of UV-A enhanced the synthesis of chlorophyll and carotenoids than the UV-B supplemented plants. Significant increase was seen in the concentration of UV-B absorbing compounds of UV-B treated plants. Increase of PS 2 activity in UV-A treated plants was seen. Changes in photosynthetic activity were measured in terms of PS 2 mediated O2 evolution and Chl a fluorescence.  相似文献   

7.
Metarhizium anisopliae and Beauveria bassiana sensu lato were isolated, from 7 and 41 % of soil samples from a commercial banana field, with average fungal density of 4.3 × 103 and 8.2 × 103 CFU g?1 soil, respectively. Twenty-one morphologically distinct B. bassiana and four M. anisopliae sensu lato isolates from different plots within the field were further characterized. ISSR fingerprinting revealed six different clusters for B. bassiana, whereas gene sequencing revealed three M. anisopliae sensu stricto and one unclassified Metarhizium sp. Bioassays with one or more representative isolates from each Metarhizium species and B. bassiana cluster showed that all indigenous isolates had lower virulence and significantly greater ST50s than reference (exotic) isolates. The data suggest that the low virulence of most indigenous isolates toward Cosmopolites sordidus adults and their relatively low density in soil samples, may help explain the low occurrence of epizootics caused by entomopathogenic fungi in populations of this pest, also known to burrow under the soil surface in banana plantations.  相似文献   

8.
To clarify the potential use of hydrophobicity-related traits of aerial conidia in formulation design of fungal biocontrol agents, hydrophobicity rates (H r) and surface areas (S a) of aerial conidia were assessed with 48 strains of Beauveria bassiana, Isaria fumosorosea and Metarhizium spp. Inter- or intra-specific variation was large in H r (59.7–92.2%) and S a (7.9–25.3 μm2 conidium−1) measurements, which were significantly correlated (r 2 = 0.55). Six isolates of the three fungi with distinguished H r and S a were further studied. Conidial wall proteins of these isolates were sequentially extracted with sodium dodecyl sulfate (SDS), formic acid (FA) and trifluoroacetic acid (TFA). Their H r values were significantly correlated to the contents (P c) of TFA-soluble, but FA-insoluble, proteins (2.7–44.8 μg per 107 conidia; r 2 = 0.79) and reduced drastically by the FA/TFA treatments, which eliminated the hydrophobin-based rodlet layers of conidial surfaces. However, the SDS treatments had no effect on either H r or rodlet layers. The dispersancy of a tested emulsifier to oil formulations of the six isolates in water was adversely correlated to their H r (r 2 = 0.94). The results indicate that both P c and S a are inherent hydrophobicity-related traits and can be utilized to select fungal biocontrol candidates for improved formulation and application.  相似文献   

9.
Pattanaik B  Roleda MY  Schumann R  Karsten U 《Planta》2008,227(4):907-916
Microcoleus chthonoplastes constitutes one of the dominant microorganisms in intertidal microbial mat communities. In the laboratory, the effects of repeated daily exposure to ultraviolet radiation (16:8 light:dark cycle) was investigated in unicyanobacterial cultures isolated from three different localities (Baltic Sea = WW6; North Sea = STO and Brittany = BRE). Photosynthesis and growth were measured in time series (12–15 days) while UV-absorbing mycosporine-like amino acids (MAAs) and cellular integrity were determined after 12 and 3 days exposure to three radiation treatments [PAR (22 μmol photon m−2 s−1) = P; PAR + UV-A (8 W m−2) = PA; PAR + UV-A + UV-B (0.4 W m−2) = PAB]. Isolate-specific responses to UVR were observed. The proximate response to radiation stress after 1-day treatment showed that isolate WW6 was the most sensitive to UVR. However, repeated exposure to radiation stress indicated that photosynthetic efficiency (F v/F m) of WW6 acclimated to UVR. Conversely, although photosynthesis in STO exhibited lower reduction in F v/F m during the first day, the values declined over time. The BRE isolate was the most tolerant to radiation stress with the lowest reduction in F v/F m sustained over time. While photosynthetic efficiencies of different isolates were able to acclimate to UVR, growth did not. The discrepancy seems to be due to the higher cell density used for photosynthesis compared to the growth measurement. Apparently, the cell density used for photosynthesis was not high enough to offer self-shading protection because cellular damage was also observed in those filaments under UVR. Most likely, the UVR acclimation of photosynthesis reflects predominantly the performance of the surviving cells within the filaments. Different strategies were observed in MAAs synthesis. Total MAAs content in WW6 was not significantly different between all the radiation treatments. In contrast, the additional fluence of UV-A and UV-B significantly increased MAAs synthesis and accumulation in STO while only UV-B fluence significantly increased MAAs content in BRE. Regardless of the dynamic photosynthetic recovery process and potential UV-protective functions of MAAs, cellular investigation showed that UV-B significantly contributed to an increased cell mortality in single filaments. In their natural mat habitat, M. chthonoplastes benefits from closely associated cyanobacteria which are highly UVR-tolerant due to the production of the extracellular UV-sunscreen scytonemin.  相似文献   

10.
This study assessed the effects of high-intensity violet light on selected yeast and mould fungi. Cell suspensions of Saccharomyces cerevisiae, Candida albicans, and dormant and germinating spores (conidia) of the mould Aspergillus niger were exposed to high-intensity narrow band violet light with peak output at 405 nm generated from a light-emitting diode (LED) array. All three fungal species were inactivated by the 405-nm light without a requirement for addition of exogenous photosensitiser chemicals. Of the fungal species tested, S. cerevisiae was most sensitive and dormant conidia of A. niger were most resistant to 405-nm light exposure. Five-log10 colony forming units per millilitre (CFU ml?1) reductions of the tested species required exposure doses of 288 J cm?2 for S. cerevisiae, 576 J cm?2 for C. albicans, and a much higher value of 2.3 kJ cm?2 for dormant conidia of A. niger. During germination, A. niger conidia became more sensitive to 405-nm light exposure and sensitivity increased as germination progressed over an 8 h test period. Light exposure under aerobic and anaerobic conditions, together with results obtained using ascorbic acid as a scavenger of reactive oxygen species, revealed that 405-nm light inactivation in fungi involved an oxygen-dependent mechanism, as previously described in bacteria. The inactivation results achieved with yeast cells and fungal spores together with operational advantages associated with the use of a visible (nonultraviolet (UV)) light source highlight the potential of 405-nm light for fungal decontamination applications.  相似文献   

11.
Abies faxoniana is a key species in reforestation processes in the southeast of the Qinghai-Tibetan Plateau of China. The changes in growth, photosynthesis and nutrient status of A. faxoniana seedlings exposed to enhanced ultraviolet-B (UV-B), nitrogen supply and their combination were investigated. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 KJ m−2 day−1; enhanced UV-B, 14.33 KJ m−2 day−1) and two nitrogen levels (0; 20 g N m−2). The results indicated that: (1) enhanced UV-B significantly caused a marked decline in growth parameters, net photosynthetic rate (Pn), photosynthetic pigments and F v/F m, (2) supplemental nitrogen supply increased the accumulation of total biomass, Pn, photosynthetic pigments and F v/F m under ambient UV-B, whereas supplemental nitrogen supply reduced Pn, and not affect biomass under enhanced UV-B, (3) enhanced UV-B or nitrogen supply changed the concentration of nutrient elements of various organs.  相似文献   

12.
Five different doses of ultraviolet-B (UV-B) radiation were supplied to tomato (Lycopersicon esculeutum. Mill) with the doubled CO2 concentration (700 μmol · mol−1) in the winter plastic greenhouse. The influences on the seedling growth, fruit quality and yield of tomato were investigated. Results showed that the seedling growth, and the contents of UV absorbing compounds, soluble sugar, organic acid, vitamin C and lycopene of tomato fruits, and yield of tomato increased under doubled CO2 concentration. Under the doubled CO2 concentration the effects of lost doses of UV-B radiation could further promote the effects of doubled CO2 concentration. However, there is no significant increase in yield of tomato. The best dose of UV-B radiation is about 1.163 kJ·m−2. When the dose of UV-B radiation is more than it, the effects of UV-B will be reduced. __________ Translated from Journal of Wuhan Botanical Research, 2006, 24(1): 49–53 [译自: 武汉植物学研究]  相似文献   

13.
Near-isogenic lines of maize varying in their genes for flavonoid biosynthesis were utilized to examine the effects of foliar flavonoids and nutrient deficiency on maximum net photosynthetic rate (P N) and chlorophyll (Chl) fluorescence (Fv/Fm) in response to ultraviolet-B (UV-B) radiation. Plants with deficient (30 to 70 % lower N, K, Mn, Fe, and Zn) and sufficient nutrients were exposed to four irradiation regimes: (1) no UV-B with solar photosynthetically active radiation (PAR), (2) two day shift to ambient artificial UV-B, 8.2–9.5 kJ m−2 d−1 (21–25 mmol m−2 d−1); (3) continuous ambient artificial UV-B; (4) continuous solar UV-B in Hawaii 12–18 kJ m−2 d−1 (32–47 mmol m−2 d−1). The natural ratio of UVB: PAR (0.25–0.40) was maintained in the UV-B treatments. In the adequately fertilized plants, lines b and lc had higher contents of flavonoids and anthocyanins than did lines hi27 and dta. UV-B induced the accumulation of foliar flavonoids in lines hi27 and b, but not in the low flavonoid line dta or in the high flavonoid line lc. In plants grown on deficient relative to adequate nutrients, flavonoid and anthocyanin contents decreased by 30–40 and 40–50 %, respectively, and Chl a and Chl b contents decreased by 30 and 70 %, respectively. The UV-B treatments did not significantly affect P N and Fv/Fm in plants grown on sufficient nutrients, except in the low flavonoid lines dta and hi27 in which P N and Fv/Fm decreased by ∼15 %. P N, Fv/Fm, and stomatal conductance decreased markedly (20–30 %) in all lines exposed to UV-B when grown on low nutrients. The decrease in Fv/Fm was 10 % less in higher flavonoid lines b and lc. The photosynthetic apparatus of maize readily tolerated ambient UV-B in the tropics when plants were adequately fertilized. In contrast, ambient UV-B combined with nutrient deficiency significantly reduced photosynthesis in this C4 plant. Nutrient deficiency increased the susceptibility of maize to UV-B-induced photoinhibition in part by decreasing the contents of photoprotective compounds.  相似文献   

14.
The responses of the early development of Laminaria japonica collected from Kiaochow Bay in China to enhanced ultraviolet-B radiation (UV-B, 280–320 nm) were studied in the laboratory. The low UV-B radiations (11.7–23.4 J·m−2·d−1) had no significant effects on zoospores attachment, but when the UV-B dose > 35.1 J·m−2·d−1 the attachment decreased significantly compared with the control. Germination of embryospores was >93% under the low (11.7–35.1 J·m−2·d−1) doses, and in the range of 78.5%–88.5% under the high (46.8–70.2 J·m−2·d−1) UV-B doses, indicating a significant radiation effect. Under the higher UV-B exposure (35.1–70.2 J·m−2·d−1), all of the few gametophytes formed from embryospores died 120 h post-release. After exposure to the low UV-B radiation (11.7–23.4 J·m−2·d−1), the formation of sporophytes decreased and the female gametophyte clones increased compared with the control. However, the sex ratio and the relative growth of female gametophytes/sporophytes had not significantly changed. According to the results, enhanced UV-B radiation has a significant effect on the early development of L. japonica under laboratory conditions, suggesting that the UV-B radiation could not be overlooked as one of the important environmental factors influencing the ontogeny of macroalgae living in marine ecosystems. Supported by the Program for New Century Excellent Talents in University (Grant No. NCET-05-0597) and National Natural Science Foundation of China (Grant No. 30270258)  相似文献   

15.
The effect of fluctuations of salinity in three different seasons on diazotrophic populations and N2 fixation in six mono cropped rice field soils of the coastal region of the Gangetic delta of West Bengal, India, was studied. The average pH, ECe, organic carbon and total nitrogen of the soils ranged from 4.99–7.08, 2.02–19.58 dSm−1, 4.68–12.03 g kg−1 and 0.44–1.70 g kg −1, respectively. The average log colony forming units of the bacterial populations and N2-fixation in the soils varied from 4.61 to 5.86 and 2.74 to 4.52 mg N2 fixed 50 ml −1 culture media respectively, with the lowest value recorded in summer. Recovery of microorganisms and N2- fixation gradually decreased with extraneous addition of NaCl in the culture media. All the eight isolates were Gram positive, spore and capsule formers. They could utilize glucose, sucrose, mannitol, starch, citrate and nitrate, and were catalase and gelatinase positive, but indole, methyl red and Vogues Proskauer reaction negative. The organisms produced alkaline reaction on TSI agar slant. The acetylene reduction assay of the isolates at 0 and 1% NaCl in the culture media were 4.51–164.52 and 1.72–100.6 nmole C2H4 ml−1 culture media in 72 h, respectively. The isolates could fix 2.42–4.45 and 2.04–4.08 mg N2 fixed 50 ml−1 culture media at 0 and 1% NaCl in the culture media respectively. 16S rDNA sequences of the isolates were similar to the species: Bacillus sp. isolate 28A, Bacillus sp. MOLA 87, Bacillus sp. By113 (B)Ydz-dh, Bacillus sp. PN13, Bacillus licheniformis strain RH101, Bacterium Antarctica 14, Bacillus sp. PN13 and Bacillus megaterium.  相似文献   

16.
We report the effect of UV-B radiation (0.8 ± 0.1 mW cm−2) and UV-B radiation supplemented with low-intensity PAR (∼80 μmol photons m−2 s−1) on the photosynthesis, photosynthetic pigments, phosphoglycolipids, oxidative damage, enzymatic antioxidants, and UV-absorbing compounds in Phormidium tenue, a marine cyanobacterium. UV-B radiation resulted in a decline in photosynthesis and photosynthetic pigments leading to lower biomass. P. tenue synthesized UV-absorbing compounds like mycosporine-like amino acids (MAAs) and scytonemin in response to UV-B radiation. Quantity of MAAs and scytonemin was higher when UV-B was supplemented with low-level PAR. UV-B treatment also resulted in quantitative changes in phosphoglycolipids of the membrane. The UV-B treatment resulted in a slight increase in the level of peroxidation of cell membrane and very little increase in the activity of superoxide dismutase (SOD). Results indicate that UV-B affected photosynthesis and that the main protective system was the synthesis of MAAs and scytonemin-like compounds rather than antioxidant enzymes such as SOD.  相似文献   

17.
The increase of ultraviolet radiation (UVR, 280–400 nm) caused by stratospheric ozone depletion has profound effects on aquatic ecosystems. High-altitude lakes in the Yunnan Plateau are exposed to high intensities of UVR and contain low concentrations of chromophoric dissolved organic matter (CDOM). Thirty-eight lakes in the Yunnan Plateau with elevations from 1291 to 3809 m above sea level were investigated to study CDOM concentrations and possible effects of UVR on the lake ecosystem. The attenuation of UVR in the Yunnan Plateau lakes was calculated from the absorption coefficient of CDOM based on an empirical relationship from lakes in the Alps and Pyrenees mountains. Absorption coefficients [α(λ)] at 320 nm [α(320)] ranged from 0.52 to 14.05 m−1 (mean ± standard deviation, 4.40 ± 3.85 m−1) and at 380 nm [α(380)] from 0.05 to 4.51 m−1 (1.40 ± 1.30 m−1). The exponential slope coefficient for the relationship of wavelength to α(λ) ranged from 16.2 to 41.4 μm−1 (21.74 ± 4.93 μm−1) over the 280–400 nm interval. Normalized fluorescence emission (NFLU) at 450 nm from an excitation wavelength of 355 nm, F n(355), averaged 7.93 ± 3.22 NFLU. A significant positive relationship was found between α(355) and F n(355). The estimated diffuse attenuation coefficients of UV-B (320 nm) and UV-A (380 nm) ranged from 0.55 to 15.77 m−1 and from 0.24 to 6.73 m−1; the corresponding 1% attenuation depths ranged from 0.29 to 8.44 m and from 0.68 to 19.12 m. Twenty-five of 38 lakes had 1% UV-B attenuation depths of 1.5 m or more. The median 1% attenuation depth was 28.8% of the sampling depth for UV-B radiation and 60% for UV-A. In addition to CDOM, chlorophyll α (Chla) and total suspended matter (TSM) also may contribute to attenuation of UVR.  相似文献   

18.
Alterations in photosynthetic capacity of primary leaves of wheat seedlings in response to ultraviolet-B (UV-B; 280–320 nm; 60 μmol m−2 s−1) exposure alone and in combination with photosynthetically active radiation (PAR; 400–800 nm; 200 μmol m−2 s−1) during different phases of leaf growth and development were assessed. UV-B exposure resulted in a phase-dependent differential loss in photosynthetic pigments, photochemical potential, photosystem 2 (PS2) quantum yield, and in vivo O2 evolution. UV-B exposure induced maximum damage to the photosynthetic apparatus during senescence phase of development. The damages were partially alleviated when UV-B exposure was accompanied by PAR. UV-B induced an enhancement in accumulation of flavonoids during all phases of development while it caused a decline in anthocyanin content during senescence. The differential changes in these parameters demonstrated the adaptation ability of leaves to UV-B stress during all phases of development and the ability was modified in UV-B+ PAR exposed samples.  相似文献   

19.
20.
In greenhouse experiments, selenium (Se) has been shown to defend plants against detrimental effects of heavy UV-B radiation stress. The aim of this study was to investigate whether this positive effect can be found in open-field conditions with enhancement of UV-B radiation. In the experiment, conducted with strawberry (Fragaria×ananassa, cultivars “Jonsok” and “Polka”) over two growing seasons, plants were exposed to UV-B radiation (including UV-A) and cultivated without Se or supplied with Se added at two levels (0.1 and 1.0 mg kg−1). The plants were monitored for growth, flavonoids, chlorophyll fluorescence, net photosynthesis as well as tissue and cell structure. Photosystem II was observed to be sensitive to UV-B stress under field conditions. In the leaves, a decrease in Fv/Fm was seen at the end of the growing season, implying a cumulative effect of UV-B stress. Several parameters, especially cell and tissue structures, were affected by UV-B and UV-A treatments, which proves the need for UV-A control in outdoor UV-B supplementation studies. Addition of Se did not ameliorate the harmful effects of UV-B but the lower Se-increment level increased leaf growth. The effects of UV-B and Se differed during the two experimental years, indicating the need to repeat experiments during several growing seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号