首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multidrug efflux pump gene (cmeB) was identified from the published Campylobacter jejuni genome sequence. Secondary structural analysis showed that the gene encoded a protein belonging to the resistance nodulation cell division (RND) family of efflux transporters. The gene was inactivated by insertional mutagenesis. Compared with the wild-type strain (NCTC 11168), the resultant knockout strain (NCTC 11168-cmeB::kan(r)) displayed increased susceptibility to a range of antibiotics including beta-lactams, fluoroquinolones, macrolides, chloramphenicol, tetracycline, ethidium bromide, the dye acridine orange and the detergent sodium dodecyl sulfate. Accumulation of ciprofloxacin was increased in the knockout mutant, but carbonyl cyanide m-chlorophenyl hydrazone, a proton motive force inhibitor, had less effect upon ciprofloxacin accumulation in the knockout mutant compared with NCTC 11168. These data show that the identified gene encodes an RND-type multi-substrate efflux transporter, which contributes to intrinsic resistance to a range of structurally unrelated compounds in C. jejuni. This efflux pump has been named CmeB (for Campylobacter multidrug efflux).  相似文献   

2.
3.
4.
AIMS: To characterize mutants of Staphylococcus aureus expressing reduced susceptibility to house cleaners (HC), assess the impact of the alternative sigma factor SigB on HC susceptibility, and determine the MIC of clinical methicillin-resistant S. aureus (MRSA) to a HC. METHODS AND RESULTS: Susceptibility to HC, HC components, H2O2, vancomycin and oxacillin and physiological parameters were determined for HC-reduced susceptibility (HCRS) mutants, parent strain COL and COLsigB::kan. HCRS mutants selected with three HC expressed reduced susceptibility to multiple HC, HC components, H2O2 and vancomycin. Two unique HCRS mutants also lost the methicillin resistance determinant. In addition, all HCRS mutants exhibited better growth at two temperatures, and one HCRS mutant expressed reduced carotenoid production. COLsigB::kan demonstrated increased susceptibility to all HC and many HC components. sigB operon mutations were not detected in one HCRS mutant background. Of 76 clinical MRSA, 20 exhibited reduced susceptibility to a HC. CONCLUSIONS: HCRS mutants demonstrate altered susceptibility to multiple antimicrobials. While sigB is required for full HC resistance, one HCRS mechanism does not involve sigB operon mutations. Clinical MRSA expressing reduced susceptibility to a common HC were detected. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests that HCRS mutants are not protected against, nor selected by, practical HC concentrations.  相似文献   

5.
Sun Y  Dai M  Hao H  Wang Y  Huang L  Almofti YA  Liu Z  Yuan Z 《PloS one》2011,6(8):e23471
Active efflux pump is a primary fluoroquinolone resistant mechanism of clinical isolates of Salmonella enterica serovar Typhimurium. RamA is an essential element in producing multidrug resistant (MDR) S. enterica serovar Typhimurium. The aim of the present study was to elucidate the roles of RamA on the development of ciprofloxacin, the first choice for the treatment of salmonellosis, resistance in S. enterica serovar Typhimurium. Spontaneous mutants were selected via several passages of S. enterica serovar Typhimurium CVCC541 susceptible strain (ST) on M-H agar with increasing concentrations of ciprofloxacin (CIP). Accumulation of ciprofloxacin was tested by the modified fluorometric method. The expression levels of MDR efflux pumps were determined by real time RT-PCR. In ST and its spontaneous mutants, the ramA gene was inactivated by insertion of the kan gene and compensated on a recombinant plasmid pGEXΦ(gst-ramA). The mutant prevention concentration (MPC) and mutant frequencies of ciprofloxacin against ST and a spontaneous mutant in the presence, absence and overexpression of RamA were tested. Four spontaneous mutants (SI1-SI4) were obtained. The SI1 (CIP MICs, 0.1 mg/L) without any target site mutation in its quinolone resistant determining regions (QRDRs) and SI3 (CIP MICs, 16 mg/L) harboring the Ser83→Phe mutation in its QRDR of GyrA strains exhibited reduced susceptibility and resistance to multidrugs, respectively. In SI1, RamA was the main factor that controlled the susceptibility to ciprofloxacin by activating MdtK as well as increasing the expression level of acrAB. In SI3, RamA played predominant role in ciprofloxacin resistance via increasing the expression level of acrAB. Likewise, the deficiency of RamA decreased the MPCs and mutant frequencies of ST and SI2 to ciprofloxacin. In conclusion, the expression of RamA promoted the development of ciprofloxacin resistant mutants of S. enterica serovar Typhimurium. The inhibition of RamA could decrease the appearance of the ciprofloxacin resistant mutants.  相似文献   

6.
7.
Subinhibitory concentrations of ciprofloxacin (CPX) raise the fibronectin-mediated attachment of fluoroquinolone-resistant Staphylococcus aureus by selectively inducing fnbB coding for one of two fibronectin-binding proteins: FnBPB. To identify candidate regulatory pathway(s) linking drug exposure to up-regulation of fnbB, we disrupted the global response regulators agr, sarA, and recA in the highly quinolone-resistant strain RA1. Whereas agr and sarA mutants of RA1 exposed to CPX still displayed increased adhesion to fibronectin, the CPX-triggered response was abolished in the uvs-568 recA mutant, but was restored following complementation with wild type recA. Steady-state levels of recA and fnbB, but not fnbA, mRNA were co-coordinately increased >3-fold in CPX-exposed strain RA1. Electrophoretic mobility shift assays revealed specific binding of purified S. aureus SOS-repressor LexA to recA and fnbB, but not to fnbA or rpoB promoters. DNase I footprint analysis showed LexA binding overlapping the core promoter elements in fnbB. We conclude that activation of recA and derepression of lexA-regulated genes by CPX may represent a response to drug-induced damage that results in a novel induction of a virulence factor leading to increased bacterial tissue adherence.  相似文献   

8.
Multidrug resistance (MDR) in bacteria has been associated with efflux pumps that export structurally unrelated compounds and decrease cytoplasmic drug accumulation. To investigate MDR in mycobacteria, we studied the Mycobacterium smegmatis mutant mc(2)11, which is resistant to doxorubicin, tetracycline, rhodamine, ethidium bromide and the hydrophilic fluoroquinolones. A genomic library constructed from this mutant was used to select clones conferring resistance to doxorubicin. Surprisingly, the clone selected encodes the efflux pump LfrA, which has been reported to confer resistance to hydrophilic fluoroquinolones, ethidium bromide, rhodamine, and acriflavine. To define the contribution of LfrA to the innate mycobacterial drug resistance and to the MDR phenotype in mc(2)11, the lfrA gene was disrupted in both the mc(2)11 mutant and the mc(2)155 wild-type parent. LfrA disruption of the wild-type strain decreased resistance to ethidium bromide and acriflavine, and increased accumulation of ethidium bromide. However, disruption of lfrA gene results only in a 2-fold decrease in minimal inhibitory concentrations (MICs) for ciprofloxacin, doxorubicin, rhodamine, and accumulation of [(14)C]ciprofloxacin was unchanged. LfrA disruption of the MDR strain mc(2)11 produced a similar phenotype. Thus, LfrA contributes significantly to the intrinsic MICs of M. smegmatis for ethidium bromide and acriflavine, but not for ciprofloxacin, doxorubicin or rhodamine.  相似文献   

9.
10.
We have previously cloned a 3.5 kb fragment from the Staphylococcus aureus multiresistance plasmid pSK1 which carries the qacA determinant responsible for linked resistance to acriflavine (Acr), ethidium bromide (Ebr), quaternary ammonium compounds (Qar), propamidine isethionate (Pir), and diamidinodiphenylamine dihydrochloride (Ddr). This report presents a biochemical and physical analysis of qacA and shows the widespread carriage of this gene on S. aureus resistance plasmids. Tn5 insertion mutagenesis defined the extent of qacA to within 2.40 kb of pSK1 DNA. Examination of the expression of insertion and deletion mutants of the cloned qacA sequences in both maxicells and minicells led to the association of a 50 kDa protein, designated QacA, with the AcrEbrQarPirDdr phenotype. Based on fluorimetric and isotopic assays used to determine the extent of accumulation of ethidium bromide by S. aureus strains harbouring pSK1, we propose that the basis of AcrEbrQarPirDdr in S. aureus is a qacA-mediated efflux system.  相似文献   

11.
12.
13.
14.
Bioassay-directed fractionation for Staphylococcus aureus multidrug resistance efflux pump inhibitors resulted in isolation of novel acylated neohesperidosides from Geranium caespitosum. The more highly acylated compounds had no direct activity against S. aureus, but potentiated activity of the antibiotics berberine, rhein, ciprofloxacin and norfloxacin. Cellular concentrations of berberine were greatly increased in the presence of active esters.  相似文献   

15.
A library of 117 chalcones was screened for efflux pump inhibitory (EPI) activity against NorA mediated ethidium bromide efflux. Five of the chalcones (5-7, 9, and 10) were active and two chalcones (9 and 10) were equipotent to reserpine with IC(50)-values of 9.0 and 7.7 μM, respectively. Twenty chalcones were subsequently proved to be inhibitors of the NorA efflux pump in everted membrane vesicles. Compounds 5, 7, and 9 synergistically increased the effect of ciprofloxacin on Staphylococcus aureus. Our results suggest that chalcones might be developed into drugs for overcoming multidrug resistance based on efflux transporters of microorganisms.  相似文献   

16.
17.
Three mutants of Lactococcus lactis subsp. lactis MG1363, termed EthR, DauR, and RhoR, were selected for resistance to high concentrations of ethidium bromide, daunomycin, and rhodamine 6G, respectively. These mutants were found to be cross resistant to a number of structurally and functionally unrelated drugs, among which were typical substrates of the mammalian multidrug transporter (P-glycoprotein) such as daunomycin, quinine, actinomycin D, gramicidin D, and rhodamine 6G. The three multidrug-resistant strains showed an increased rate of energy-dependent ethidium and daunomycin efflux compared with that of the wild-type strain. This suggests that resistance to these toxic compounds is at least partly due to active efflux. Efflux of ethidium from the EthR strain could occur against a 37-fold inwardly directed concentration gradient. In all strains, ethidium efflux was inhibited by reserpine, a well-known inhibitor of P-glycoprotein. Ionophores which selectively dissipate the membrane potential or the pH gradient across the membrane inhibited ethidium and daunomycin efflux in the wild-type strain, corresponding with a proton motive force-driven efflux system. The ethidium efflux system in the EthR strain, on the other hand, was inhibited by ortho-vanadate and not upon dissipation of the proton motive force, which suggests the involvement of ATP in the energization of transport. The partial inhibition of ethidium efflux by ortho-vanadate and nigericin in the DauR and RhoR strains suggest that a proton motive force-dependent and an ATP-dependent system are expressed simultaneously. This is the first report of an ATP-dependent transport system in prokaryotes which confers multidrug resistance to the organism.  相似文献   

18.
Topoisomerase IV is the primary cellular target for most quinolones in Gram-positive bacteria; however, its interaction with these agents is poorly understood. Therefore, the effects of four clinically relevant antibacterial quinolones (ciprofloxacin, and three new generation quinolones: trovafloxacin, levofloxacin, and sparfloxacin) on the DNA cleavage/religation reaction of Staphylococcus aureus topoisomerase IV were characterized. These quinolones stimulated enzyme-mediated DNA scission to a similar extent, but their potencies varied significantly. Drug order in the absence of ATP was trovafloxacin > ciprofloxacin > levofloxacin > sparfloxacin. Potency was enhanced by ATP, but to a different extent for each drug. Under all conditions examined, trovafloxacin was the most potent quinolone and sparfloxacin was the least. The enhanced potency of trovafloxacin correlated with several properties. Trovafloxacin induced topoisomerase IV-mediated DNA scission more rapidly than other quinolones and generated more cleavage at some sites. The most striking correlation, however, was between quinolone potency and inhibition of enzyme-mediated DNA religation: the greater the potency, the stronger the inhibition. Dose-response experiments with two topoisomerase IV mutants that confer clinical resistance to quinolones (GrlA(Ser80Phe) and GrlA(Glu84Lys)) indicate that resistance is caused by a decrease in both drug affinity and efficacy. Trovafloxacin is more active against these enzymes than ciprofloxacin because it partially overcomes the effect on affinity. Finally, comparative studies on DNA cleavage and decatenation suggest that the antibacterial properties of trovafloxacin result from increased S. aureus topoisomerase IV-mediated DNA cleavage rather than inhibition of enzyme catalysis.  相似文献   

19.
To evaluate the effect of a sar mutation on the agr locus, Northern (RNA) blotting was performed to determine the levels of RNAIII, the agr regulatory molecule, in two isogenic pairs of Staphylococcus aureus strains. Our results demonstrated that RNAIII was either significantly diminished or absent in both sar mutants compared with the parents. The RNAIII level was partially restored in sar mutants complemented with an intact sar gene (designated sarA). Additionally, we were able to complement selected sar phenotypes with a plasmid carrying RNAIII (pRN6735). These studies suggest that the sarA gene is necessary for the optimal expression of agr. The sarA gene of strain RN450 was subsequently cloned and sequenced. Sequence analysis revealed an open reading frame of 372 bp with a predicted molecular size of 14,718 Da and a deduced pI of 8.52. The deduced protein sequence has a predominance of charged residues (33%) and shares sequence similarity with the virF gene of Shigella flexneri.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号