首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein kinase Bcr is a negative regulator of cell proliferation and oncogenic transformation. We identified Bcr as a ligand for the PDZ domain of the cell junction and Ras-interacting protein AF-6. The Bcr kinase phosphorylates AF-6, which subsequently allows efficient binding of Bcr to AF-6, showing that the Bcr kinase is a regulator of the PDZ domain-ligand interaction. Bcr and AF-6 colocalize in epithelial cells at the plasma membrane. In addition, Bcr, AF-6, and Ras form a trimeric complex. Bcr increases the affinity of AF-6 to Ras, and a mutant of AF-6 that lacks a specific phosphorylation site for Bcr shows a reduced binding to Ras. Wild-type Bcr, but not Bcr mutants defective in binding to AF-6, interferes with the Ras-dependent stimulation of the Raf/MEK/ERK pathway. Since AF-6 binds to Bcr via its PDZ domain and to Ras via its Ras-binding domain, we propose that AF-6 functions as a scaffold-like protein that links Bcr and Ras to cellular junctions. We suggest that this trimeric complex is involved in downregulation of Ras-mediated signaling at sites of cell-cell contact to maintain cells in a nonproliferating state.  相似文献   

2.
AF-6 is a key molecule essential for structure organization of cell-cell junction of polarized epithelia. It belongs to a novel cell-cell adhesion system. The AF-6 PDZ domain mediates interactions by binding to a specific amino acid sequence in target proteins. Here we report the solution structure of the AF-6 PDZ domain determined by NMR. Previously, the AF-6 PDZ domain was considered to be a class II PDZ domain. However we found that a unique hydrophilic amino acid, Gln70, at position alphaB1 makes the alphaB/betaB groove of the AF-6 PDZ domain significantly different from that of the canonical class II PDZ domain. The AF-6 PDZ domain does not have the second hydrophobic binding pocket, and the N-terminal end of alphaB is closer to betaB. Using BIACORE and NMR chemical shift perturbation experiments, we have studied the binding characteristics of the PDZ domain to the C-terminal peptide of Neurexin, KKNKDKEYYV, and that of Bcr, KRQSILFSTEV. The C-terminal peptide of Neurexin is a class II ligand, whereas that of Bcr is a class I ligand. The dissociation constants of these ligands were 4.08 x 10(-7) and 2.23 x 10(-6) m, respectively. Each of the four C-terminal positions in Neurexin and Bcr may contribute to the interaction. The three-dimensional models of the AF-6 PDZ-Neurexin C-terminal peptide complex and the AF-6 PDZ-Bcr C-terminal peptide complex were built up by molecular dynamics simulations. Unlike the canonical class II PDZ domain, Ala74 at alphaB5 rather than the residue at alphaB1 makes direct hydrophobic contact with the side chain of Tyr at the -2 position of the ligand.  相似文献   

3.
c-Src is a tightly regulated non-receptor tyrosine kinase. We describe the C-terminus of c-Src as a ligand for a PDZ (postsynaptic density 95, PSD-95; discs large, Dlg; zonula occludens-1, ZO-1) domain. The C-terminal residue Leu of c-Src is essential for binding to a PDZ domain. Mutation of this residue does not affect the intrinsic kinase activity in vitro, but interferes with c-Src regulation in cells. As a candidate PDZ protein, we analysed AF-6, a junctional adhesion protein. The AF-6 PDZ domain restricts the number of c-Src substrates, whereas knockdown of AF-6 has the opposite effect. Binding of c-Src to the AF-6 PDZ domain interferes with phosphorylation of c-Src at Tyr527 by the C-terminal kinase, and reduces c-Src autophosphorylation at Tyr416, resulting in a moderately activated c-Src kinase. Unphosphorylated Tyr527 allows binding of c-Src to AF-6. This can be overcome by overexpression of CSK or strong activation of c-Src. c-Src is recruited by AF-6 to cell-cell contact sites, suggesting that c-Src is regulated by a PDZ protein in special cellular locations. We identified a novel type of c-Src regulation by interaction with a PDZ protein.  相似文献   

4.
Niu X  Chen Q  Zhang J  Shen W  Shi Y  Wu J 《Biochemistry》2007,46(51):15042-15053
PDZ (postsynaptic density-95, disks large, zonula occludens-1) domains are small, protein-protein interaction modules that have multiple binding surfaces for the docking of diverse molecules. These domains can propagate signals from ligand-binding site to distal regions of the structure through allosteric communication. Recent works have revealed that picosecond to nanosecond time scale dynamics play a potential role in propagating long-range signals within a protein. Comparison of AF-6 PDZ domain structures in free and complex forms shows a conformation rearrangement of distal surface 2, which is far from the peptide binding groove. The relaxation dispersion experiments detected that the free AF-6 PDZ domain was sampling multiple conformations; millisecond dynamics mapped a network for allostery signal transmission throughout the AF-6 PDZ domain in the weak saturation state, and intramolecular motions were observed in distal surface 1 when the protein was saturated. These results provide evidence that the allosteric process in the AF-6 PDZ domain is not two-state; instead, the millisecond dynamic network provides a mechanism for the transmission of allosteric signals throughout a protein. Interestingly, the two distal surfaces of the AF-6 PDZ domain respond differently to peptide binding; distal surface 1 changes in millisecond dynamics, whereas distal surface 2 undergoes structural rearrangement. The significance of the different response patterns in the signaling pathway and its relevance to the function of the AF-6 PDZ domain should be studied further.  相似文献   

5.
Growth factor receptor-binding protein-2 (Grb2) plays a key role in signal transduction initiated by Bcr/Abl oncoproteins and growth factors, functioning as an adaptor protein through its Src homology 2 and 3 (SH2 and SH3) domains. We found that Grb2 was tyrosine-phosphorylated in cells expressing BCR/ABL and in A431 cells stimulated with epidermal growth factor (EGF). Phosphorylation of Grb2 by Bcr/Abl or EGF receptor reduced its SH3-dependent binding to Sos in vivo, but not its SH2-dependent binding to Bcr/Abl. Tyr209 within the C-terminal SH3 domain of Grb2 was identified as one of the tyrosine phosphorylation sites, and phosphorylation of Tyr209 abolished the binding of the SH3 domain to a proline-rich Sos peptide in vitro. In vivo expression of a Grb2 mutant where Tyr209 was changed to phenylalanine enhanced BCR/ABL-induced ERK activation and fibroblast transformation, and potentiated and prolonged Grb2-mediated activation of Ras, mitogen-activated protein kinase and c-Jun N-terminal kinase in response to EGF stimulation. These results suggest that tyrosine phosphorylation of Grb2 is a novel mechanism of down-regulation of tyrosine kinase signaling.  相似文献   

6.
We have identified the PDZ domain protein AF-6 as an intracellular binding partner of the junctional adhesion molecule (JAM), an integral membrane protein located at cell contacts. Binding of AF-6 to JAM required the presence of the intact C terminus of JAM, which represents a classical type II PDZ domain-binding motif. Although JAM did not interact with the single PDZ domains of ZO-1 or of CASK, we found that a ZO-1 fragment containing PDZ domains 2 and 3 bound to JAM in vitro in a PDZ domain-dependent manner. AF-6 as well as ZO-1 could be coprecipitated with JAM from endothelial cell extracts, demonstrating the association of the endogenously expressed molecules in vivo. Targeting of JAM to sites of cell contacts could be affected by the loss of the PDZ domain-binding C terminus. Full-length mouse JAM co-distributed with endogenous AF-6 in human Caco-2 cells at sites of cell contact independent of whether adjacent cells expressed mouse JAM as an extracellular binding partner. In contrast, truncated JAM lacking the PDZ domain-binding C terminus did not co-distribute with endogenous AF-6, but was restricted to cell contacts between cells expressing mouse JAM. Our results suggest that JAM can be recruited to intercellular junctions by its interaction with the PDZ domain-containing proteins AF-6 and possibly ZO-1.  相似文献   

7.
The cellular Bcr protein consists of an N-terminal serine/threonine kinase domain, a central guanine nucleotide exchange factor homology region and a C-terminal GTPase-activating protein domain. Previous work in our laboratory established that Bcr is a major transformation-related substrate for the v-Fps tyrosine kinase, and tyrosine phosphorylation of Bcr induces Bcr-Grb-2/SOS association in vivo through the Src homology 2 (SH2) domain of Grb-2. In the present study, we mapped the region of Bcr tyrosine phosphorylation by c-Fes, the human homologue of v-Fps, to Bcr N-terminal amino acids 162-413 by using a baculovirus/Sf-9 cell co-expression system. Tyrosine phosphorylation of Bcr by Fes greatly enhanced the binding of Bcr to the SH2 domains of multiple signalling molecules in vitro, including Grb-2, Ras GTPase activating protein, phospholipase C-gamma, the 85,000 M(r) subunit of phosphatidylinositol 3'-kinase, and the Abl tyrosine kinase. In contrast with SH2 binding, tyrosine phosphorylation of Bcr reduced its ability to associate with the 14-3-3 protein Bap-1 (Bcr-associated protein-1), a Bcr substrate and member of a family of phosphoserine-binding adaptor proteins. These experiments provide in vitro evidence that tyrosine phosphorylation may modulate the interaction of Bcr with multiple growth-regulatory signalling pathways.  相似文献   

8.
The PDZ domain of neuronal nitric oxide synthase (nNOS) functions as a scaffold for organizing the signal transduction complex of the enzyme. The NMR structure of a complex composed of the nNOS PDZ domain and an associated peptide suggests that a two-stranded beta-sheet C-terminal to the canonical PDZ domain may mediate its interaction with the PDZ domains of postsynaptic density-95 and alpha-syntrophin. The structure also provides the molecular basis of recognition of Asp-X-Val-COOH peptides by the nNOS PDZ domain. The role of the C-terminal extension in Asp-X-Val-COOH peptide binding is investigated. Additionally, NMR studies further show that the Asp-X-Val-COOH peptide and a C-terminal peptide from a novel cytosolic protein named CAPON bind to the same pocket of the nNOS PDZ domain.  相似文献   

9.
The PSD95/Dlg/ZO-1 (PDZ) domain-containing protein zonula occludens-1 (ZO-1) selectively localizes to the cytoplasmic basis of the slit diaphragm, a specialized cell-cell contact in between glomerular podocytes necessary to prevent the loss of protein in the urine. However, the function of ZO-1 at the slit diaphragm has remained elusive. Deletion of Neph1, a slit diaphragm protein of the immunoglobulin superfamily with a cytoplasmic PDZ binding site, causes proteinuria in mice. We demonstrate now that Neph1 binds ZO-1. This interaction was mediated by the first PDZ domain of ZO-1 and involved the conserved PDZ domain binding motif present in the carboxyl terminus of the three known Neph family members. Furthermore, Neph1 co-immunoprecipitates with ZO-1 from lysates of mouse kidneys, demonstrating that this interaction occurs in vivo. Both deletion of the PDZ binding motif of Neph1 as well as threonine-to-glutamate mutation of the threonine within the binding motif abrogated binding of ZO-1, suggesting that phosphorylation may regulate this interaction. ZO-1 binding was associated with a strong increase in tyrosine phosphorylation of the cytoplasmic tail of Neph1 and dramatically accelerated the ability of Neph1 to induce signal transduction. Thus, our data suggest that ZO-1 may organize Neph proteins and recruit signal transduction components to the slit diaphragm of podocytes.  相似文献   

10.
11.
PDZ protein interaction domains are typically selective for C-terminal ligands, but non-C-terminal, 'internal' ligands have also been identified. The PDZ domain from the cell polarity protein Par-6 binds C-terminal ligands and an internal sequence from the protein Pals1/Stardust. The structure of the Pals1-Par-6 PDZ complex reveals that the PDZ ligand-binding site is deformed to allow for internal binding. Whereas binding of the Rho GTPase Cdc42 to a CRIB domain adjacent to the Par-6 PDZ regulates binding of C-terminal ligands, the conformational change that occurs upon binding of Pals1 renders its binding independent of Cdc42. These results suggest a mechanism by which the requirement for a C terminus can be readily bypassed by PDZ ligands and reveal a complex set of cooperative and competitive interactions in Par-6 that are likely to be important for cell polarity regulation.  相似文献   

12.
Phospholipase C-beta isozymes that are activated by G protein-coupled receptors (GPCR) and heterotrimeric G proteins carry a PSD-95/Dlg/ZO-1 (PDZ) domain binding motif at their C terminus. Through interactions with PDZ domains, this motif may endow the PLC-beta isozyme with specific roles in GPCR signaling events that occur in compartmentalized regions of the plasma membrane. In this study, we identified the interaction of PLC-beta3 with Shank2, a PDZ domain-containing multimodular scaffold in the postsynaptic density (PSD). The C terminus of PLC-beta3, but not other PLC-beta isotypes, specifically interacts with the PDZ domain of Shank2. Homer 1b, a Shank-interacting protein that is linked to group I metabotropic glutamate receptors and IP3 receptors, forms a multiple complex with Shank2 and PLC-beta3. Importantly, microinjection of a synthetic peptide specifically mimicking the C terminus of PLC-beta3 markedly reduces the mGluR-mediated intracellular calcium response. These results demonstrate that Shank2 brings PLC-beta3 closer to Homer 1b and constitutes an efficient mGluR-coupled signaling pathway in the PSD region of neuronal synapses.  相似文献   

13.
The novel Ras effector mNore1, capable of inducing apoptosis, is a multidomain protein. It comprises a C1 domain homologous to PKC and an RA domain similar to the Ras effectors AF-6 and RalGDS. Here, we determine the affinity of these two domains to the active forms of Ras and Rap1 using isothermal calorimetric titration. The interaction of Ras/Rap1-GTP with the RA domain of mNore1 is weakened significantly by direct binding of the C1 domain to the RA domain. In order to analyze this observation in atomic detail, we solved the C1 solution structure by NMR. By determining chemical shifts and relaxation rates, we can show an intramolecular complex of C1-RA. GTP-Ras titration and binding to RA disrupts this complex and displaces the C1 domain. Once the C1 domain tumbles freely in solution, a lipid binding interface becomes accessible. Furthermore, we provide evidence of phosphatidylinositol 3-phosphate binding of the free C1 domain.  相似文献   

14.
Postsynaptic density-95 is a multidomain scaffolding protein that recruits glutamate receptors to postsynaptic sites and facilitates signal processing and connection to the cytoskeleton. It is the leading member of the membrane-associated guanylate kinase family of proteins, which are defined by the PSD-95/Discs large/ZO-1 (PDZ)-Src homology 3 (SH3)-guanylate kinase domain sequence. We used NMR to show that phosphorylation of conserved tyrosine 397, which occurs in vivo and is located in an atypical helical extension (α3), initiates a rapid equilibrium of docked and undocked conformations. Undocking reduced ligand binding affinity allosterically and weakened the interaction of PDZ3 with SH3 even though these domains are separated by a ~25-residue linker. Additional phosphorylation at two linker sites further disrupted the interaction, implicating α3 and the linker in tuning interdomain communication. These experiments revealed a novel mode of regulation by a detachable PDZ element and offer a first glimpse at the dynamic interaction of PDZ and SH3-guanylate kinase domains in membrane-associated guanylate kinases.  相似文献   

15.
The C terminus (ct) of protein kinase C-alpha (PKCalpha) has a type I PDZ binding motif, whereas GluR2 has a type II PDZ binding motif. Both motifs are recognized by the PDZ domain of protein interacting with protein kinase C (PICK1), and PICK1-PKCalpha-controlled phosphorylation regulates the synaptic expression and function of GluR2. Here, we show that a specific mutation within the carboxylate-binding loop of the PDZ domain of PICK1 (K27E; PICK1-KE) results in a loss of interaction with GluR2 but not with PKCalpha. In GST pull-down studies, PICK1-WT (wild type) but not PICK1-KE was retained by GST-ct-GluR2. Furthermore, PICK1-WT co-immunoprecipitated both PKCalpha and GluR2, whereas PICK1-KE only co-immunoprecipitated PKCalpha. In heterologous cells, PICK1-WT, but not PICK1-KE, clustered GluR2 and also clustered GluR1 in a GluR2-dependent manner. However, neither PICK1-WT nor PICK1-KE altered the distribution of PKCalpha, even after phorbol ester-induced redistribution of PKCalpha to the membrane. Finally, PICK1-KE showed no mislocalization when compared with PICK1-WT in neurons. Taken together, it appears that the PDZ domain of PICK1 is less sensitive to mutations for PKCalpha when compared with GluR2 binding. These results suggest that the PDZ domain of PICK1 has distinct PKCalpha and GluR2 binding subsite(s).  相似文献   

16.
The tumor suppressor phosphatase PTEN is a key regulator of cell growth and apoptosis that interacts with PDZ domains from regulatory proteins, including MAGI-1/2/3, hDlg, and MAST205. Here we identified novel PTEN-binding PDZ domains within the MAST205-related proteins, syntrophin-associated serine/threonine kinase and MAST3, characterized the regions of PTEN involved in its interaction with distinctive PDZ domains, and analyzed the functional consequences on PTEN of PDZ domain binding. Using a panel of PTEN mutations, as well as PTEN chimeras containing distinct domains of the related protein TPTE, we found that the PTP and C2 domains of PTEN do not affect PDZ domain binding and that the C-terminal tail of PTEN (residues 350-403) provides selectivity to recognize specific PDZ domains from MAGI-2, hDlg, and MAST205. Binding of PTEN to the PDZ-2 domain from MAGI-2 increased PTEN protein stability. Furthermore, binding of PTEN to the PDZ domains from microtubule-associated serine/threonine kinases facilitated PTEN phosphorylation at its C terminus by these kinases. Our results suggest an important role for the C-terminal region of PTEN in the selective association with scaffolding and/or regulatory molecules and provide evidence that PDZ domain binding stabilizes PTEN and targets this tumor suppressor for phosphorylation by microtubule-associated serine/threonine kinases.  相似文献   

17.
The beta1-adrenergic receptor (beta1AR) is known to be localized to synapses and to modulate synaptic plasticity in many brain regions, but the molecular mechanisms determining beta1AR subcellular localization are not fully understood. Using overlay and pull-down techniques, we found that the beta1AR carboxyl terminus associates with MAGI-2 (membrane-associated guanylate kinase inverted-2), a protein also known as S-SCAM (synaptic scaffolding molecule). MAGI-2 is a multidomain scaffolding protein that contains nine potential protein-protein interaction modules, including 6 PDZ domains, 2 WW domains, and a guanylate kinase-like domain. The beta1AR carboxyl terminus binds with high affinity to the first PDZ domain of MAGI-2, with the last few amino acids of the beta1AR carboxyl terminus being the key determinants of the interaction. In cells, the association of full-length beta1AR with MAGI-2 occurs constitutively and is enhanced by agonist stimulation of the receptor, as assessed by both co-immunoprecipitation experiments and immunofluorescence co-localization studies. Agonist-induced internalization of the beta1AR is markedly increased by co-expression with MAGI-2. Strikingly, this result is the opposite of the effect of co-expression with PSD-95, a previously reported binding partner of the beta1AR. Further cellular experiments revealed that MAGI-2 has no effect on beta1AR oligomerization but does promote association of beta1AR with the cytoplasmic signaling protein beta-catenin, a known MAGI-2 binding partner. These data reveal that MAGI-2 is a specific beta1AR binding partner that modulates beta1AR function and facilitates the physical association of the beta1AR with intracellular proteins involved in signal transduction and synaptic regulation.  相似文献   

18.
The binding of immune complexes to macrophage Fcgamma receptor results in a subsequent inhibition of lipopolysaccharide-stimulated interleukin-12 synthesis without affecting the induction of tumor necrosis factor-alpha. RNA interference targeting MAST205, a 205-kDa serine/threonine kinase, and transfection of dominant negative MAST205 mutants also mimic this type II macrophage phenotype. Our previous epistasis experiments suggested that the position of MAST205 in the TLR4 signal pathway was proximal to the IkappaB kinase complex. We now report that MAST205 forms a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappaB activation. We have identified a peptide (residues 218-233) from the N terminus of MAST205 that, when coupled to a protein transduction domain, inhibits the lipopolysaccharide-stimulated activation of NF-kappaB, modulates the size of the MAST205.TRAF6 complex, and inhibits ubiquitination of TRAF6. A dominant negative N-terminal MAST205 deletion mutant also inhibits TRAF6 ubiquitination. The domain required for degradation of MAST205 after Fcgamma receptor activation resides within the N-terminal 261 residues, and degradation is triggered by protein kinase C isoform phosphorylation of Ser/Thr residues. These results suggest that MAST205 functions as a scaffolding protein controlling TRAF6 activity and, therefore, plays an important role in regulating inflammatory responses.  相似文献   

19.
PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes.  相似文献   

20.
PDZ domains are protein adapter modules present in a few hundred human proteins. They play important roles in scaffolding and signal transduction. PDZ domains usually bind to the C termini of their target proteins. To assess the binding mechanism of this interaction we have performed the first in-solution kinetic study for PDZ domains and peptides corresponding to target ligands. Both PDZ3 from postsynaptic density protein 95 and PDZ2 from protein tyrosine phosphatase L1 bind their respective target peptides through an apparent A + B --> A.B mechanism without rate-limiting conformational changes. But a mutant with a fluorescent probe (Trp) outside of the binding pocket suggests that slight changes in the structure take place upon binding in protein tyrosine phosphatase-L1 PDZ2. For PDZ3 from postsynaptic density protein 95 the pH dependence of the binding reaction is consistent with a one-step mechanism with one titratable group. The salt dependence of the interaction shows that the formation of electrostatic interactions is rate-limiting for the association reaction but not for dissociation of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号