首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The longspined bullhead (Taurulus bubalis, Euphrasen 1786) belongs to the family Cottidae and is a rocky shore species that inhabits the intertidal zones of the Eastern Atlantic since Iceland, southward to Portugal and also the North Sea and Baltic, northward to the Gulf of Finland, with some occurrences in the northern Mediterranean coasts eastward to the Gulf of Genoa. We analysed the phylogeographic patterns of this species using mitochondrial and nuclear markers in populations throughout most of its distributional range in west Europe. We found that T. bubalis has a relatively shallow genealogy with some differentiation between Atlantic and North Sea. Genetic diversity was homogeneous across all populations studied. The possibility of a glacial refugium near the North Sea is discussed. In many, but not all, marine temperate organisms, patterns of diversity are similar across the species range. If this phenomenon proves to be most common in cold adapted species, it may reflect the availability of glacial refugia not far from their present-day northern limits.  相似文献   

2.
Coastal and demersal chondrichthyans, such as the small-spotted catshark, are expected to exhibit genetic differentiation in areas of complex geomorphology like the Mediterranean Basin because of their limited dispersal ability. To test this hypothesis, we used a fragment of the mitochondrial cytochrome c oxidase subunit I gene and 12 nuclear microsatellite loci in order to investigate the genetic structure and historical demography of this species, and to identify potential barriers to gene flow. Samples were collected from the Balearic Islands, the Algerian Basin, the Ionian Sea, the Corinthian Gulf and various locations across the Aegean Sea. Additional sequences from the Atlantic and the Levantine Basin retrieved from GenBank were included in the mitochondrial DNA analysis. Both mitochondrial and nuclear microsatellite DNA data revealed a strong genetic subdivision, mainly between the western and eastern Mediterranean, whereas the Levantine Basin shared haplotypes with both areas. The geographic isolation of the Mediterranean basins seems to enforce the population genetic differentiation of the species, with the deep sea acting as a strong barrier to its dispersal. Contrasting historical demographic patterns were also observed in different parts of the species'' distribution, most notably a population growth trend in the western Mediterranean/Atlantic area and a slight decreasing one in the Aegean Sea. The different effects of the Pleistocene glacial periods on the habitat availability may explain the contrasting demographic patterns observed. The current findings suggest that the small-spotted catshark exhibits several genetic stocks in the Mediterranean, although further study is needed.  相似文献   

3.
The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792), exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp). We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM), possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours.  相似文献   

4.
The transition zone between the Mediterranean and Atlantic basins has been extensively addressed in phylogeographical studies of marine species. However, biases exist towards the analysis of highly dispersive species, and there is a higher sampling effort in European coasts compared to North Africa. This may be hindering a detailed understanding of the historical and contemporary processes that shaped patterns of population genetic structure in the region. In the present study, we investigated the phylogeographical and phylogenetic patterns of mitochondrial cytochrome c oxidase subunit I sequences from a species with direct development and low dispersal abilities, Stenosoma nadejda (Rezig, 1989). The study area included 13 localities along the Atlantic and Mediterranean North African coasts, as well as the Alboran Sea. A new Stenosoma species, from the coasts of Algeria and Alboran Island, was discovered. For S. nadejda, phylogeographical analyses revealed three distinct clades: one in the Iberian Atlantic plus the Alboran Sea, one in the western Mediterranean, and another in the Atlantic coast of Africa. Haplotypes from the Alboran Island were more related to those from the western Mediterranean coast (east of the Almeria–Oran Front). Given the strong differentiation, it is probable that this species survived in multiple glacial refugia during the Pleistocenic glaciations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 419–431.  相似文献   

5.
Phylogeographical patterns of the sand goby Pomatoschistus minutus (Gobiidae, Teleostei) were studied by means of sequence and single-stranded conformational polymorphism analysis of a 283-bp fragment of the cytochrome b locus of the mtDNA. A total of 228 individuals sampled at 13 sites throughout the species's distributional range revealed a moderate level of diversity and a low but significant level of overall genetic differentiation at all but one site. The goby sample from the Adriatic Sea differed in sequence by approximately 10% from the Atlantic P. minutus and is thought to belong to a cryptic species of the genus Pomatoschistus . Limited genetic differentiation with a weak pattern of isolation-by-distance was recorded throughout the distributional range of the typical P. minutus . Phylogeographical analysis suggested a contiguous range expansion in the Atlantic and Baltic basins during the Eemian and evidence for a glacial refugium in the southern North Sea during the Weichselian. In P. minutus from the western Mediterranean Sea a high number of endemic haplotypes as well as the most common Atlantic haplotype were recorded in appreciable frequencies. This might be explained by secondary contact between different mitochondrial lineages, which evolved in allopatry.   © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 561–576.  相似文献   

6.
Information on spatial and temporal patterns of genetic diversity is a prerequisite to understanding the demography of populations, and is fundamental to successful management and conservation of species. In the sea, it has been observed that oceanographic and other physical forces can constitute barriers to gene flow that may result in similar population genetic structures in different species. Such similarities among species would greatly simplify management of genetic biodiversity. Here, we tested for shared genetic patterns in a complex marine area, the Baltic Sea. We assessed spatial patterns of intraspecific genetic diversity and differentiation in seven ecologically important species of the Baltic ecosystem—Atlantic herring (Clupea harengus), northern pike (Esox lucius), European whitefish (Coregonus lavaretus), three-spined stickleback (Gasterosteus aculeatus), nine-spined stickleback (Pungitius pungitius), blue mussel (Mytilus spp.), and bladderwrack (Fucus vesiculosus). We used nuclear genetic data of putatively neutral microsatellite and SNP loci from samples collected from seven regions throughout the Baltic Sea, and reference samples from North Atlantic areas. Overall, patterns of genetic diversity and differentiation among sampling regions were unique for each species, although all six species with Atlantic samples indicated strong resistence to Atlantic-Baltic gene-flow. Major genetic barriers were not shared among species within the Baltic Sea; most species show genetic heterogeneity, but significant isolation by distance was only detected in pike and whitefish. These species-specific patterns of genetic structure preclude generalizations and emphasize the need to undertake genetic surveys for species separately, and to design management plans taking into consideration the specific structures of each species.  相似文献   

7.
We investigated genetic diversity and differentiation of the Pacific white-sided dolphin (Lagenorhynchus obliquidens) in Japanese coastal waters and offshore North Pacific by analyzing mitochondrial DNA and nuclear microsatellite variation. A total of 519 bp of the mitochondrial control region was sequenced and five microsatellite locus were genotyped for 59 individuals. A high level of haplotypic diversity (h=96.1%), moderate level of nucleotide diversity (pi=1.65%) and average expected heterozygosity (HE=0.66-0.76) were within an extent of those reported for other odontocetes. Consistent genetic difference between the samples from Japanese coastal Pacific-Sea of Japan and offshore North Pacific was indicated by analyses of molecular variance (AMOVAs) based on mtDNA and microsatellite variations, comparison of genetic variabilities, and geographical distributions of mtDNA haplotypes and microsatellite alleles. This result suggests that Pacific white-sided dolphins in each of the above two areas belong to different populations between which gene flow has been severely restricted. The low genetic diversity and mtDNA genealogy of the population in Japanese coastal waters suggest that it originated from a small population that colonized the Sea of Japan or that experienced population reduction when this Sea was isolated from the North Pacific during a glacial period in the Late Pleistocene.  相似文献   

8.
The alteration in palaeodrainage river connections has shaped patterns of speciation, genetic diversity and the geographical distribution of the species‐rich freshwater fauna of North America. The integration of ancestral range reconstruction methods and divergence time estimates provides an opportunity to infer palaeodrainage connectivity and test alternative palaeodrainage hypotheses. Members of the Orangethroat Darter clade, Ceasia, are endemic to southeastern North America and occur north and south of the Pleistocene glacial front, a distributional pattern that makes this clade of closely related species an ideal system to investigate the number and location of glacial refugia and compare alternative hypotheses regarding the proposed evolution of the Teays‐Mahomet palaeodrainage. This study utilized time‐calibrated mitochondrial and nuclear gene phylogenies and present‐day geographical distributions to investigate hypothesized Teays‐Mahomet River connections through time using a dispersal–extinction–cladogenesis (DEC) framework. Results of DEC ancestral area reconstructions indicate that the Teays‐Mahomet River was a key dispersal route between disjunct highland regions connecting the Mississippi River tributaries to the Old‐Ohio Drainage minimally at two separate occasions during the Pleistocene. There was a dynamic interplay between palaeodrainage connections through time and postglacial range expansion from three glacial refugia that shaped the current genetic structure and geographical distributions of the species that comprise Ceasia.  相似文献   

9.
Two putative populations of hooded seals (Cystophora cristata) occur in the North Atlantic. The Greenland Sea population pup and breed on the pack ice near Jan Mayen ('West Ice') while the Northwest Atlantic population is thought to pup in the Davis Strait, in the Gulf of St. Lawrence (the 'Gulf'), and off southern Labrador or northeast Newfoundland (the 'Front'). We used microsatellite profiling of 300 individuals at 13 loci and mitochondrial DNA sequencing of the control region of 123 individuals to test for genetic differentiation between these four breeding herds. We found no significant genetic differences between breeding areas, nor evidence for cryptic nor higher level genetic structure in this species. The Greenland Sea breeding herd was genetically most distant from the Northwest Atlantic breeding areas; however, the differences were statistically nonsignificant. Our data therefore suggest that the world's hooded seals comprise a single panmictic genetic population.  相似文献   

10.
The phylogeographical patterns of a small marine fish, the common goby, Pomatoschistus microps, were assessed at 12 sites along the northeastern Atlantic coasts and the western Mediterranean Sea. A combination of two genetic markers was employed: cellulose acetate allozyme electrophoresis (CAGE) and sequence analysis of a 289 bp fragment of the mitochondrial locus cytochrome b. Both markers were congruent in revealing significant differences between samples (global FST = 0.247 for the allozymes and PhiST = 0.437 for the mitochondrial DNA data) and a pattern of isolation-by-distance. Phylogeographical analyses yielded a shallow branching structure with four groups. Three of those were confined to the Atlantic basin and showed a star-like pattern. The fourth group contained a central haplotype occurring at the edges of the species' distribution, accompanied by a few more rare variants, which were restricted to the Mediterranean Sea. A genetic break was observed around the British Isles, with distinct haplotypes dominating at either side of the English Channel. A significantly negative correlation between the degree of genetic diversity and latitude was recorded both for mitochondrial DNA (mtDNA) and allozymes in the Atlantic basin. Gene flow analysis suggested that recolonization of the North Sea and the coasts of western Scotland and Ireland may have taken place from a glacial refugium in the Southern Bight of the North Sea. These results are discussed in the perspective of possible postglacial migration routes of marine fish along the northeastern Atlantic coasts.  相似文献   

11.
Kelp aquaculture is globally developing steadily as human food source, along with other applications. One of the newer crop species is Saccharina latissima, a northern hemisphere kelp inhabiting temperate to arctic rocky shores. To protect and document its natural genetic variation at the onset of this novel aquaculture, as well as increase knowledge on its taxonomy and phylogeography, we collected new genetic data, both nuclear and mitochondrial, and combined it with previous knowledge to estimate genetic connectivity and infer colonization history. Isolation‐with‐migration coalescent analyses demonstrate that gene flow among the sampled locations is virtually nonexistent. An updated scenario for the origin and colonization history of S. latissima is developed as follows: We propose that the species (or species complex) originated in the northwest Pacific, crossed to the northeast Pacific in the Miocene, and then crossed the Bering Strait after its opening ~5.5 Ma into the Arctic and northeast Atlantic. It subsequently crossed the Atlantic from east to west. During the Pleistocene, it was compressed in the south with evidence for northern refugia in Europe. Postglacial recolonization led to secondary contact in the Canadian Arctic. Saccharina cichorioides is shown to probably belong to the S. latissima species complex and to derive from ancestral populations in the Asian North Pacific. Our novel approach of comparing inferred gene flow based on coalescent analysis versus Wright's island model suggests that equilibrium levels of differentiation have not yet been reached in Europe and, hence, that genetic differentiation is expected to increase further if populations are left undisturbed.  相似文献   

12.
Patterns of population structure and historical genetic demography of blacknose sharks in the western North Atlantic Ocean were assessed using variation in nuclear‐encoded microsatellites and sequences of mitochondrial (mt)DNA. Significant heterogeneity and/or inferred barriers to gene flow, based on microsatellites and/or mtDNA, revealed the occurrence of five genetic populations localized to five geographic regions: the southeastern U.S Atlantic coast, the eastern Gulf of Mexico, the western Gulf of Mexico, Bay of Campeche in the southern Gulf of Mexico and the Bahamas. Pairwise estimates of genetic divergence between sharks in the Bahamas and those in all other localities were more than an order of magnitude higher than between pairwise comparisons involving the other localities. Demographic modelling indicated that sharks in all five regions diverged after the last glacial maximum and, except for the Bahamas, experienced post‐glacial, population expansion. The patterns of genetic variation also suggest that the southern Gulf of Mexico may have served as a glacial refuge and source for the expansion. Results of the study demonstrate that barriers to gene flow and historical genetic demography contributed to contemporary patterns of population structure in a coastal migratory species living in an otherwise continuous marine habitat. The results also indicate that for many marine species, failure to properly characterize barriers in terms of levels of contemporary gene flow could in part be due to inferences based solely on equilibrium assumptions. This could lead to erroneous conclusions regarding levels of connectivity in species of conservation concern.  相似文献   

13.
Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio‐economically, relatively little information is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; c. 21 Kya) indicated large areas of suitable habitat south of the species’ current‐day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long‐term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species.  相似文献   

14.
The European sea bass Dicentrarchus labrax represents a historically and commercially valuable species in the north‐east Atlantic, although the demographic history and the patterns of geographical structure of the species in the north‐east Atlantic remain poorly understood. The present study investigates the population genetic structure of sea bass in north‐western European waters, employing different genetic markers [a portion of the mitochondrial (mt)DNA control region and 13 nuclear microsatellites] aiming to unravel demographic history and population connectivity. The results obtained show a previously unrecognized pattern of population divergence at mtDNA, with three strikingly different lineages identified. Extant sea bass populations, including the Mediterranean lineage, derive from an Atlantic ancestor. A much increased number of nuclear microsatellite loci (comparatively to previous studies) still fail to detect biologically meaningful patterns of spatial genetic structuring in the North Atlantic. Past Pleistocene glacial and interglacial events and some degree of female philopatry might be at the basis of the current geographical separation of the Atlantic lineages that has been identified. Signatures of sudden demographic expansions are more evident in the most recent mitochondrial lineages, and their slight, yet significant, geographical segregation leads to the hypothesis that present‐day spawning grounds for European sea bass may still to some extent be linked to their most recent glacial refugia. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 364–377.  相似文献   

15.
Aim Based on extensive range‐wide sampling, we address the phylogeographical history of one of the most widespread and taxonomically complex sedges in Europe, Carex nigra s. lat. We compare the genetic structure of the recently colonized northern areas (front edge) and the long‐standing southern areas (rear edge), and assess the potential genetic basis of suggested taxonomic divisions at the rank of species and below. Location Amphi‐Atlantic, central and northern Europe, circum‐Mediterranean mountain ranges, central Siberia, Himalayas. Methods A total of 469 individuals sampled from 83 populations, covering most of the species’ range, were analysed with amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) markers. Bayesian clustering, principal coordinates analysis, and estimates of diversity and differentiation were used for the analysis of AFLP data. CpDNA data were analysed with statistical parsimony networks and maximum parsimony and Bayesian inference of phylogenetic trees. Results Overall genetic diversity was high, but differentiation among populations was limited. Major glacial refugia were inferred in the Mediterranean Basin and in western Russia; in addition, there may have been minor refugia in the North Atlantic region. In the southern part of the range, we found high levels, but geographically quite poorly structured genetic diversity, whereas the levels of genetic diversity varied among different areas in the north. North American populations were genetically very similar to the European populations. Main conclusions The data are consistent with extensive gene flow, which has obscured the recent history of the taxon. The limited differentiation in the south probably results from the mixing of lineages expanding from several local refugia. Northward post‐glacial colonization resulted in a leading‐edge pattern of low diversity in the Netherlands, Belgium, Scotland and Iceland, whereas the observed high diversity levels in Fennoscandia suggest broad‐fronted colonization from the south as well as from the east. The patterns found in the American populations are consistent with post‐glacial colonization, possibly even with anthropogenic introduction from Europe. Our data also suggest that the tussock‐forming populations of C. nigra, often referred to as a distinct species (Carex juncella), represent an ecotype that has originated repeatedly from different populations with creeping rhizomes.  相似文献   

16.
Abstract We investigated the genetic structure of blacktip shark (Carcharhinus limbatus) continental nurseries in the northwestern Atlantic Ocean, Gulf of Mexico, and Caribbean Sea using mitochondrial DNA control region sequences and eight nuclear microsatellite loci scored in neonate and young-of-the-year sharks. Significant structure was detected with both markers among nine nurseries (mitochondrial PhiST = 0.350, P < 0.001; nuclear PhiST = 0.007, P < 0.001) and sharks from the northwestern Atlantic, eastern Gulf of Mexico, western Gulf of Mexico, northern Yucatan, and Belize possessed significantly different mitochondrial DNA haplotype frequencies. Microsatellite differentiation was limited to comparisons involving northern Yucatan and Belize sharks with nuclear genetic homogeneity throughout the eastern Gulf of Mexico, western Gulf of Mexico, and northwestern Atlantic. Differences in the magnitude of maternal vs. biparental genetic differentiation support female philopatry to northwestern Atlantic, Gulf of Mexico, and Caribbean Sea natal nursery regions with higher levels of male-mediated gene flow. Philopatry has produced multiple reproductive stocks of this commercially important shark species throughout the range of this study.  相似文献   

17.
The evolutionary effects of glacial periods are poorly understood for Southern Hemisphere marine intertidal species, particularly obligatory sessile organisms. We examined this by assessing the phylogeographic patterns of the southern African volcano barnacle, Tetraclita serrata, a dominant species on rocky intertidal shores. Restricted gene flow in some geographical areas was hypothesized based on oceanic circulation patterns and known biogeographic regions. Barnacle population genetic structure was investigated using the mitochondrial cytochrome oxidase subunit 1 (COI) region for 410 individuals sampled from 20 localities spanning the South African coast. The mtDNA data were augmented by generating nuclear internal transcribed spacer 1 (ITS1) sequences from a subset of samples. Phylogenetic and population genetic analyses of mitochondrial DNA data reveal two distinct clades with mostly sympatric distributions, whereas nuclear analyses reveal only a single lineage. Shallow, but significant structure (0.0041–0.0065, P<0.01) was detected for the mtDNA data set, with the south-west African region identified as harbouring the highest levels of genetic diversity. Gene flow analyses on the mtDNA data show that individuals sampled in south-western localities experience gene flow primarily in the direction of the Benguela Current, while south and eastern localities experience bi-directional gene flow, suggesting an influence of both the inshore currents and the offshore Agulhas Current in the larval distribution of T. serrata. The mtDNA haplotype network, Bayesian Skyline Plots, mismatch distributions and time since expansion indicate that T. serrata population numbers were not severely affected by the Last Glacial Maximum (LGM), unlike other southern African marine species. The processes resulting in the two morphologically cryptic mtDNA lineages may be the result of a recent historical allopatric event followed by secondary contact or could reflect selective pressures due to differing environmental conditions.  相似文献   

18.
Environmental gradients have emerged as important barriers to structuring populations and species distributions. We set out to test whether the strong salinity gradient from the marine North Sea to the brackish Baltic Sea in northern Europe represents an ecological and genetic break, and to identify life history traits that correlate with the strength of this break. We accumulated mitochondrial cytochrome oxidase subunit 1 sequence data, and data on the distribution, salinity tolerance, and life history for 28 species belonging to the Cnidaria, Crustacea, Echinodermata, Mollusca, Polychaeta, and Gastrotricha. We included seven non‐native species covering a broad range of times since introduction, in order to gain insight into the pace of adaptation and differentiation. We calculated measures of genetic diversity and differentiation across the environmental gradient, coalescent times, and migration rates between North and Baltic Sea populations, and analyzed correlations between genetic and life history data. The majority of investigated species is either genetically differentiated and/or adapted to the lower salinity conditions of the Baltic Sea. Species exhibiting population structure have a range of patterns of genetic diversity in comparison with the North Sea, from lower in the Baltic Sea to higher in the Baltic Sea, or equally diverse in North and Baltic Sea. Two of the non‐native species showed signs of genetic differentiation, their times since introduction to the Baltic Sea being about 80 and >700 years, respectively. Our results indicate that the transition from North Sea to Baltic Sea represents a genetic and ecological break: The diversity of genetic patterns points toward independent trajectories in the Baltic compared with the North Sea, and ecological differences with regard to salinity tolerance are common. The North Sea–Baltic Sea region provides a unique setting to study evolutionary adaptation during colonization processes at different stages by jointly considering native and non‐native species.  相似文献   

19.
Aim The brackish water mysid, Neomysis integer, is one of the most common mysid species along the coasts of the north‐east Atlantic. In the present study, the phylogeographical patterns were examined throughout the distribution range of N. integer. In particular, the latitudinal trends in genetic diversity and the distribution of genetic variation were examined in order to elucidate the imprints of the Pleistocene glaciations. Location North‐east Atlantic coasts from the Baltic Sea to the south of Spain. Methods A total of 461 specimens from 11 populations were analysed by means of single‐stranded conformation polymorphism analysis combined with DNA sequencing of a fragment of the mitochondrial cytochrome c oxidase I gene. The genetic structure was examined by using a progression of phylogenetic, demographic and population genetic analyses to elucidate not only the geographical structure, but also the evolutionary history producing that structure. Results The levels of genetic diversity were relatively uniform throughout the distribution range, with the exception of a decline at the northern and southern edges of distribution. A high heterogeneity was observed between the populations analysed (global ΦST = 0.787). This is caused by the disparate distribution of the cytochrome oxidase I haplotypes, with several population‐specific haplotypes. A clear genetic break (2.4% sequence divergence) occurred between the southernmost Guadalquivir population and all other populations. Main conclusions The present study corroborates the expectations of the genetic patterns typically observed in an estuarine species. The within‐population variability was low, whereas a significant (moderate to high) divergence was observed between populations. Phylogeographical analysis revealed that northern populations within the English Channel, North Sea and Baltic Sea are characterized by several widespread haplotypes, while the Irish population and all sites south of the Bay of Biscay consist solely of unique haplotypes. This pattern, combined with the relative high levels of genetic diversity, could be indicative for the presence of a glacial refugium in the English Channel region. Under this scenario N. integer must have survived the Last Glacial Maximum in the palaeoriver system present in that region.  相似文献   

20.
One mechanism by which marine organisms may respond to climate shifts is range shifts. The corkwing wrasse (Symphodus melops) is a temperate fish species, inhabiting the coasts of Europe, that show strong indications of current as well as historical (ice-age) range shifts towards the north. Nine neutral microsatellite DNA markers were screened to study genetic signatures and spatial population structure over the entire geographic and thermal gradient of the species from Portugal to Norway. A major genetic break (F ST  = 0.159 average among pairs) was identified between Scandinavian and more southern populations, with a marked reduction (30% or more) in levels of genetic variability in Scandinavia. The break is probably related to bottleneck(s) associated with post-glacial colonization of the Scandinavian coasts, and indicates a lack of present gene flow across the North Sea. The lack of gene flow can most likely be attributed to the species’ need for rocky substrate for nesting and a relatively short pelagic larval phase, limiting dispersal by ocean currents. These findings demonstrate that long-distance dispersal may be severely limited in the corkwing wrasse, and that successful range-shifts following present climate change may be problematic for this and other species with limited dispersal abilities, even in the seemingly continuous marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号