首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Endocrine practice》2010,16(1):93-96
ObjectiveTo describe 3 cases of atypical diabetes mellitus following bone marrow transplantation.MethodsWe describe the clinical presentation and relevant laboratory findings of 3 patients who presented with new-onset diabetes mellitus after bone marrow transplantation and discuss the possible mechanisms.ResultsA 52-year-old white man with chronic myelogenous leukemia, a 51-year-old white woman with acute myelogenous leukemia, and a 38-year-old Hispanic woman with acute myelogenous leukemia presented with acute onset of diabetes mellitus after bone marrow transplantation. Although blood glucose levels were initially very high, the patients required only small insulin dosages for glycemic control. Both the acute onset and requirement of relatively small insulin dosages were characteristic of type 1 diabetes mellitus. Onset of diabetes appeared to be unrelated to immunosuppressive drug therapy because it happened several months after starting these drugs. C-peptide was detectable, and glutamic acid decarboxylase antibodies were absent. Diabetes mellitus remitted spontaneously after a few months while the immunosuppressive drugs were continued.ConclusionAlthough the underlying mechanisms are unknown, cytokine changes after bone marrow transplantation may have led to temporary b-cell dysfunction in these patients. (Endocr Pract. 2010;16:93-96)  相似文献   

2.
A young woman given a renal allograft for polycystic kidney disease developed insulin dependent diabetes mellitus 25 days after transplantation. There was no family history of diabetes, plasma glucose concentrations had been normal at presentation and on five subsequent occasions, and at no time were islet cell antibodies detectable. Plasma C peptide concentrations, however, were greatly suppressed after transplantation and remained so for up to six months. The immunosuppressive regimen had included cyclosporin A, which had been difficult to regulate and caused definite signs of toxicity in the patient. By virtue of its reported toxicity for beta cells and the reversal of the diabetes several months after the dose was reduced cyclosporin was incriminated as the probable causative agent. Dose related beta cell toxicity of cyclosporin A may be a risk in recipients of this drug and warrants careful monitoring of drug and glucose concentrations.  相似文献   

3.
Statins, with their lipid-lowering properties, are a first-line therapy for the prevention of cardiovascular diseases. Recent evidence, however, suggests that statins can increase the risk of new-onset diabetes (NOD). The molecular mechanisms of statin-induced NOD are not precisely known, although some pathophysiologic mechanisms have been suggested. Specific to the beta cell, these mechanisms include alterations in insulin secretion, changes in ion channels, modulation of signaling pathways, and inflammation/oxidative stress. Outwith the beta cell, other suggested mechanisms involve adipocytes, including alterations in adipocyte differentiation and modulation of leptin and adiponectin, and genetic and epigenetic mechanisms, including alterations in microRNA. The evidence supporting these and other mechanisms will be discussed. Greater understanding of the underlying mechanisms linking the onset of diabetes to statin therapy is essential and clinically relevant, as it may enable novel preventative or therapeutic approaches to be instituted and guide the production of a new generation of statins lacking this side effect.  相似文献   

4.
Nowadays human pancreatic islet transplantation is a therapeutic approach in kidney transplanted patients with type 1 diabetes having severe macrovascular disease. Because of its low morbidity compared to pancreas transplantation, islet transplantation can be also proposed to patients with brittle type 1 diabetes and severe hypoglycemic events despite intensive insulin therapy. Evaluation of glucose instability is crucial for the optimal selection of candidates and to assess the benefit/risk ratio. The main objective of islet transplantation is not to reverse diabetes but to restore a satisfactory glucose control aiming to improve the clinical management and the quality of life. Further clinical trials with new immunosuppressive drugs are needed in order to improve the efficiency of islet transplantation and to apply this treatment to a large number of patients.  相似文献   

5.
The recent success of "steroid-free" immunosuppressive protocols and improvements in islet preparation techniques have proven that pancreatic islet transplantation (PIT) is a valid therapeutic approach for patients with type 1 diabetes. However, there are major obstacles to overcome before PIT can become a routine therapeutic procedure, such as the need for chronic immunosuppression, the loss of functional islet mass after transplantation requiring multiple islet infusion to achieve euglycemia without exogenous administration of insulin, and the shortage of human tissue for transplantation. With reference to the first obstacle, stable islet allograft function without immunosuppressive therapy has been achieved after tolerance was induced in diabetic primates. With reference to the second obstacle, different strategies, including gene transfer of antiapoptotic genes, have been used to protect isolated islets before and after transplantation. With reference to the third obstacle, pigs are an attractive islet source because they breed rapidly, there is a long history of porcine insulin use in humans, and there is the potential for genetic engineering. To accomplish islet transplantation, experimental opportunities must be balanced by complementary characteristics of basic mouse and rat models and preclinical large animal models. Well-designed preclinical studies in primates can provide the quality of information required to translate islet transplant research safely into clinical transplantation.  相似文献   

6.
Developing a device that protects xenogeneic islets to allow treatment and potentially cure of diabetes in large mammals has been a major challenge in the past decade. Using xenogeneic islets for transplantation is required in light of donor shortage and the large number of diabetic patients that qualify for islet transplantation. Until now, however, host immunoreactivity against the xenogeneic graft has been a major drawback for the use of porcine islets. Our study demonstrates the applicability of a novel immunoprotective membrane that allows successful xenotransplantation of rat islets in diabetic minipigs without immunosuppressive therapy. Rat pancreatic islets were encapsulated in highly purified alginate and integrated into a plastic macrochamber covered by a poly-membrane for subcutaneous transplantation. Diabetic Sinclair pigs were transplanted and followed for up to 90 days. We demonstrated a persistent graft function and restoration of normoglycemia without the need for immunosuppressive therapy. This concept could potentially offer an attractive strategy for a more widespread islet replacement therapy that would restore endogenous insulin secretion in diabetic patients without the need for immunosuppressive drugs and may even open up an avenue for safe utilization of xenogeneic islet donors.  相似文献   

7.
《Endocrine practice》2011,17(3):430-440
ObjectiveTo review the rationale for the use of reninangiotensin-aldosterone system (RAAS) inhibition to prevent type 2 diabetes mellitus and cardiovascular events and to discuss clinical data evaluating the relationship between RAAS blockade and diabetes prevention.MethodsPubMed was searched to identify preclinical and clinical data addressing this aim.ResultsPotential mechanisms of angiotensin IImediated insulin resistance and type 2 diabetes may include impaired blood flow and sympathetic activity, increased oxidative stress, alterations in insulin signaling, and effects on adipose tissue. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers have demonstrated reduced incidences of new-onset diabetes in patients with prediabetes or hypertension and in other cardiovascular populations; however, insight into the corresponding impact on cardiovascular-related morbidity and mortality has been lacking. A recent trial (NAVIGATOR) was designed to evaluate incident diabetes and cardiovascular outcomes as part of its primary endpoint. In this trial, valsartan-based therapy reduced the incidence of newonset diabetes by 14% relative to placebo over the 5-year follow-up period (P < .001). Cardiovascular outcomes, however, were not significantly affected by active treatment, which may be attributed to a number of potential confounding factors including the low rate of cardiovascular disease at baseline, concurrent implementation of lifestyle modification in all patients, and the substantial use of other risk-reducing agents.ConclusionsAngiotensin II has been implicated in a number of pathophysiologic processes with the potential to indirectly or directly influence the pathogenesis of insulin resistance and type 2 diabetes. Most clinical trials show a reduced risk of new-onset diabetes with RAAS blockade; however, recent results of the NAVIGATOR trial show that the addition of valsartan to lifestyle modification reduces the risk of diabetes, but does not improve cardiovascular outcomes. (Endocr Pract. 2011;17:430-440)  相似文献   

8.
《Endocrine practice》2012,18(4):579-590
ObjectiveTo review pathophysiologic conditions and diagnostic and therapeutic approaches in the management of endocrine-metabolic disorders after kidney transplanta tion (KT).MethodsWe discuss the assessment of diabetes mel litus (DM), hyperlipidemia, hypertension, and disturbances of bone and mineral metabolism after KT.ResultsKT offers patients with end-stage kidney disease substantial improvement in life expectancy and quality of life. Despite amelioration of renal dysfunction, however, these patients are at risk for the deterioration of existing and the development of new endocrine pathologic conditions. Pretransplant DM and new-onset diabetes after transplantation are associated with worse patient and graft survival. Little is known about preventing new-onset dia betes after transplantation and managing DM shortly after KT. In addition to glycemic control in patients with dia betes, management of cardiovascular risk factors includes appropriate recognition and treatment of hypertension and dyslipidemia. After KT, patients are at considerable risk for derangements in calcium and vitamin D metabolism. Immunosuppressive medications may cause compromised glucose and lipid metabolism, which may, in turn, contrib ute to the progression of preexisting and the development of new posttransplant endocrinopathies.ConclusionClinical care of kidney transplant patients should include a comprehensive endocrine assessment before and after KT in close collaboration with transplant nephrology providers. A referral to an endocrinologist should be initiated early during the pretransplant stage, and collaborative management should be maintained in kidney transplant patients to improve clinical outcomes. (Endocr Pract. 2012;18:579-590)  相似文献   

9.
Mesenchymal stem cells (MSCs) can be derived from adult bone marrow, fat and several foetal tissues. In vitro , MSCs have the capacity to differentiate into multiple mesodermal and non-mesodermal cell lineages. Besides, MSCs possess immunosuppressive effects by modulating the immune function of the major cell populations involved in alloantigen recognition and elimination. The intriguing biology of MSCs makes them strong candidates for cell-based therapy against various human diseases. Type 1 diabetes is caused by a cell-mediated autoimmune destruction of pancreatic β-cells. While insulin replacement remains the cornerstone treatment for type 1 diabetes, the transplantation of pancreatic islets of Langerhans provides a cure for this disorder. And yet, islet transplantation is limited by the lack of donor pancreas. Generation of insulin-producing cells (IPCs) from MSCs represents an attractive alternative. On the one hand, MSCs from pancreas, bone marrow, adipose tissue, umbilical cord blood and cord tissue have the potential to differentiate into IPCs by genetic modification and/or defined culture conditions In vitro . On the other hand, MSCs are able to serve as a cellular vehicle for the expression of human insulin gene. Moreover, protein transduction technology could offer a novel approach for generating IPCs from stem cells including MSCs. In this review, we first summarize the current knowledge on the biological characterization of MSCs. Next, we consider MSCs as surrogate β-cell source for islet transplantation, and present some basic requirements for these replacement cells. Finally, MSCs-mediated therapeutic neovascularization in type 1 diabetes is discussed.  相似文献   

10.
Oxidative stress has been implicated as a contributor to both the onset and the progression of diabetes and its associated complications. Some of the consequences of an oxidative environment are the development of insulin resistance, β-cell dysfunction, impaired glucose tolerance, and mitochondrial dysfunction, which can lead ultimately to the diabetic disease state. Experimental and clinical data suggest an inverse association between insulin sensitivity and ROS levels. Oxidative stress can arise from a number of different sources, whether disease state or lifestyle, including episodes of ketosis, sleep restriction, and excessive nutrient intake. Oxidative stress activates a series of stress pathways involving a family of serine/threonine kinases, which in turn have a negative effect on insulin signaling. More experimental evidence is needed to pinpoint the mechanisms contributing to insulin resistance in both type 1 diabetics and nondiabetic individuals. Oxidative stress can be reduced by controlling hyperglycemia and calorie intake. Overall, this review outlines various mechanisms that lead to the development of oxidative stress. Intervention and therapy that alter or disrupt these mechanisms may serve to reduce the risk of insulin resistance and the development of diabetes.  相似文献   

11.
The amino acid leucine is a potent secretagogue, capable of inducing insulin secretion. It also plays an important role in the regulation of mTOR activity, therefore, providing impetus to investigate if a leucine-sensing mechanism in the mTOR pathway is involved in insulin secretion. We found that leucine-induced insulin secretion was inhibited by both the mTOR inhibitor rapamycin as well as the adrenergic α2 receptor agonist clonidine. We also demonstrated that leucine down-regulated the surface expression of adrenergic α2A receptor via activation of the mTOR pathway. The leucine stimulatory effect on insulin secretion was attenuated in diabetic Goto-Kakizaki rats that overexpress adrenergic α2A receptors, confirming the role of leucine in insulin secretion. Thus, our data demonstrate that leucine regulates insulin secretion by modulating adrenergic α2 receptors through the mTOR pathway. The role of the mTOR pathway in metabolic homeostasis led us to a second important finding in this study; retrospective analysis of clinical data showed that co-administration of rapamycin and clonidine was associated with an increased incidence of new-onset diabetes in renal transplantation patients over those receiving rapamycin alone. We believe that inhibition of mTOR by rapamycin along with activation of adrenergic α2 receptors by clonidine represents a double-hit to pancreatic islets that synergistically disturbs glucose homeostasis. This new insight may have important implications for the clinical management of renal transplant patients.  相似文献   

12.
Cholesterol plays an essential role in determining cell membrane physico-chemical characteristics and functions. A proper membrane structure is critical in pancreatic β-cells for glucose-mediated insulin secretion, and alterations in cellular cholesterol content may negatively affect this process, leading to β-cell dysfunction. The low density lipoprotein receptor (LDL-R) appears to play a relevant role in ß-cell dysfunction due to cholesterol accumulation. This observation raised the question of whether hypocholesterolemic drugs which increase LDL-R expression might bear diabetogenic properties, thus increasing the risk of new-onset diabetes or worsen glycaemic parameters in diabetic patients.Being at higher cardiovascular risk, diabetic patients are usually treated with hypolipidemic drugs to correct the atherogenic dyslipidemia characteristic of this pathological condition. Statin therapy has been associated with an increased incidence of new-onset diabetes (NOD), being the diabetogenic effect depending on the type and dose of statin. However, it is worth noting that the benefits on cardiovascular mortality largely exceed the increased risk associated with the development of diabetes. Although genetic variants associated with lower levels of LDL-C are also associated with an increased NOD risk, clinical trials with lipid-lowering drugs other than statins, namely ezetimibe or monoclonal antibodies against PCSK9, did not observe an increase of developing diabetes.In summary, molecular evidence clearly points to a key role for cholesterol homeostasis in pancreatic β-cell function which, in humans, is negatively affected by statins. Available data exclude that this could be the case for other hypocholesterolemic approaches, but long-term studies are warranted to explore this critical aspect.  相似文献   

13.
Islet transplantation is a promising potential therapy for patients with type 1 diabetes. The outcome of islet transplantation depends on the transplantation of a sufficient amount of β-cell mass. However, the initial loss of islets after transplantation is problematic. We hypothesized the hyperglycemic status of the recipient may negatively affect graft survival. Therefore, in the present study, we evaluated the effect of insulin treatment on islet transplantation involving a suboptimal amount of islets in Akita mice, which is a diabetes model mouse with an Insulin 2 gene missense mutation. Fifty islets were transplanted under the left kidney capsule of the recipient mouse with or without insulin treatment. For insulin treatment, sustained-release insulin implants were implanted subcutaneously into recipient mice 2 weeks before transplantation and maintained for 4 weeks. Islet transplantation without insulin treatment did not reverse hyperglycemia. In contrast, the group that received transplants in combination with insulin treatment exhibited improved fasting blood glucose levels until 18 weeks after transplantation, even after insulin treatment was discontinued. The group that underwent islet transplantation in combination with insulin treatment had better glucose tolerance than the group that did not undergo insulin treatment. Insulin treatment improved graft survival from the acute phase (i.e., 1 day after transplantation) to the chronic phase (i.e., 18 weeks after transplantation). Islet apoptosis increased with increasing glucose concentration in the medium or blood in both the in vitro culture and in vivo transplantation experiments. Expression profile analysis of grafts indicated that genes related to immune response, chemotaxis, and inflammatory response were specifically upregulated when islets were transplanted into mice with hyperglycemia compared to those with normoglycemia. Thus, the results demonstrate that insulin treatment protects islets from the initial rapid loss that is usually observed after transplantation and positively affects the outcome of islet transplantation in Akita mice.  相似文献   

14.
Diabetes mellitus is a risk factor for various types of tendon disorders. The mechanisms underlying diabetes associated tendinopathies remain unclear, but typically, systemic factors related to high blood glucose levels are thought to be causally involved. We hypothesize that tendon immanent cells might be directly involved in diabetic tendinopathy. We therefore analyzed human and rat tendons by immunohistochemistry, laser capture microdissection, and single cell PCR for pancreatic β-cell associated markers. Moreover, we examined the short term effects of a single injection of streptozotocin, a toxin for GLUT2 expressing cells, in rats on insulin expression of tendon cells, and on the biomechanical properties of Achilles tendons. Tendon cells, both in the perivascular area and in the dense collagenous tissue express insulin and Glut2 on both protein and mRNA levels. In addition, glucagon and PDX-1 are present in tendon cells. Intraperitoneal injection of streptozotocin caused a loss of insulin and insulin mRNA in rat Achilles tendons after only 5 days, accompanied by a 40% reduction of mechanical strength. In summary, a so far unrecognized, extrapancreatic, insulin-producing cell type, possibly playing a major role in the pathophysiology of diabetic tendinopathy is described. In view of these data, novel strategies in tendon repair may be considered. The potential of the described cells as a tool for treating diabetes needs to be addressed by further studies.  相似文献   

15.
Jon Kobashigawa 《Trials》2000,1(3):166-6
Coronary artery disease in the transplanted heart, also known as cardiac allograft vasculopathy (CAV), is one of the major causes of mortality late after transplantation. It affects up to 50% of all heart transplant recipients within 5 years of surgery. The mechanisms of CAV are multifactorial and include both immune and nonimmune factors. Ischemia of the graft at the time of transplantation is one of the more important nonimmune factors, because this leads to endothelial cell injury. Immune factors involving cellular and humoral rejection can further insult the vascular endothelial cell, leading to a cascade of immunologic responses. The optimal treatment prophylaxis for CAV has not been established. The treatment approach to this major post-transplant complication includes modification of risk factors through medical therapies and strategies. The early use of diltiazem and/or pravastatin or simvastatin has been demonstrated to be effective in reducing the development of CAV, but does not completely prevent it. There are many ongoing studies involving newer immunosuppressive agents that may hold promise for the future.  相似文献   

16.
《Endocrine practice》2010,16(4):699-706
ObjectiveTo review the current literature on posttransplant diabetes mellitus after hematopoietic stem cell transplantation, including its epidemiologic features, transplant-related risk factors, and treatment.MethodsA literature search was conducted in PubMed for articles on diabetes mellitus after hematopoietic stem cell transplantation and effects of immunosuppressants on glucose metabolism.ResultsWithin 2 years after hematopoietic stem cell transplantation, up to 30% of patients may have diabetes. Although some of these cases resolve, the rates of diabetes and metabolic syndrome remain elevated in comparison with those in the nontransplant patient population during long-term follow-up. Traditional risk factors for diabetes as well as features related to the transplantation process, including immunosuppressive medications, are associated with posttransplant diabetes. Cardiovascular risk also appears to be increased in this population. Limited data are available on hypoglycemic agents for posttransplant diabetes; thus, treatment decisions must be based on safety, efficacy, and tolerability, with consideration of each patient’s transplant-related medications and comorbidities.ConclusionTreatment of diabetes mellitus in patients who have undergone hematopoietic stem cell transplantation necessitates attention to the posttransplant medication regimen and clinical course. Although no guidelines specific to treatment of posttransplant diabetes in this patient population currently exist, treatment to goals similar to those for nontransplant patients with diabetes should be considered in an attempt to help reduce long-term morbidity and mortality. (Endocr Pract. 2010;16:699-706)  相似文献   

17.
For most patients with type I diabetes, insulin therapy and glucose monitoring are sufficient to maintain glycemic control. However, hypoglycemia is a potentially lethal side effect of insulin treatment in patients who are glycemically labile or have hypoglycemia-associated autonomic failure [1]. For those patients, an alternative therapy is beta cell replacement via pancreas or islet transplantation. Pancreas transplants using cadaveric donor organs reduce insulin dependence but carry risks involved in major surgery and chronic immunosuppression. Islet transplantation, in which islets are isolated from donor pancreases and intravenously infused, require no surgery and can utilize islets isolated from pancreases unsuitable for whole organ transplantation. However, islet transplantation also requires immunosuppression, and standard steroid regimens may be toxic to beta cells [2]. The 2000 Edmonton Trial demonstrated the first long-term successful islet transplantation by using a glucocorticoid-free immunosuppressive regimen (sirolimus and tacrolimus). The Clinical Islet Transplantation (CIT) Consortium seeks to improve upon the Edmonton Protocol by using anti-thymocyte globulin (ATG) and TNFα antagonist (etanercept). The trials currently in progress, in addition to research efforts to find new sources of islet cells, reflect enormous potential for islet transplantation in treatment of type I diabetes.  相似文献   

18.
Insulin-dependent diabetes mellitus is an autoimmune disease that causes a progressive destruction of the pancreatic beta cells. As a result, the patient requires exogenous insulin to maintain normal blood glucose levels. Both the pancreas and the islets of Langerhans have been transplanted successfully in humans and in animal models, resulting in full normalization of glucose homeostasis. However, insulin independence, transient or persistent, was documented in only a small fraction of cases until recently. The chronic immunosuppression required to avoid immunological rejection appears to be toxic to the islets and adds the risk of lymphoproliferative disease reported earlier. For islet transplantation to become the method of choice, it is essential first to identify islet-friendly immunosuppressive regimens and/or to develop methods that induce donor-specific tolerance and improve islet isolation and transplantation protocols. Indeed, researchers have already successfully allografted islets in the presence of nonsteroidal immunosuppression in a process known as the Edmonton protocol. An alternative method, gene therapy, could replace these other methods and better meet the insulin requirement of an individual without requiring pancreatic or islet transplantation. This alternative, however, requires animal models to develop and test clinical protocols and to demonstrate the feasibility of preclinical trials. Nonhuman primates are ideally suited to achieve these goals. The efforts toward developing a nonhuman primate diabetic model with demonstrable insulin dependence are discussed and include pancreatic and islet transplant trials to reverse the diabetic state and achieve insulin independence. Also described are the various protocols that have been tested in primates to circumvent immunosuppression by using tolerance induction strategies in lieu of immunosuppression, thus exploring the field of donor-specific tolerance that extends beyond islet transplantation.  相似文献   

19.
The incidence of type 2 diabetes mellitus is steadily escalating throughout the world in people from a wide range of ethnic groups and all social and economic levels. Type 2 diabetes is no longer a disease only of adults: parallel with the global epidemic of type 2 diabetes in adults, an 'emerging epidemic' of type 2 diabetes has been observed in youth over the last decade. Research and clinical experience in adults have established that insulin resistance is a major risk factor for type 2 diabetes. However, insulin resistance alone is not sufficient to cause diabetes, which will develop only when insulin secretion by the beta-cells fails. This review discusses the recent emergence of type 2 diabetes in children and adolescents, its risk factors, pathophysiologic mechanisms and treatment modalities.  相似文献   

20.
Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号