首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bighorn sheep populations experienced a drastic reduction in both distribution and abundance until the advent of modern wildlife management, where improving viability of extant populations and translocating animals into historical habitat range have been the most important management policies. The fact that subspecies relationships among bighorn are ambiguous,together with the importance of selecting appropriate source stock and the expense of translocation projects, makes an understanding of subspecies relationships and genetic variation, within and between populations, important for the management and conservation of this species. In this study, genetic variation in 279 bighorn sheep from 13 study sites in Arizona, California, New Mexico and Alberta, Canada were examined by analyzing ten microsatellite loci to determine interpopulation differentiation and relationships between closely related taxa. All populations contained a substantial amount of genetic variation. Genetic differences between populations were large and roughly proportional to geographic distance. The significance of this to desert subspecies relationships and management is discussed.  相似文献   

2.
Gompert Z 《Molecular ecology》2012,21(7):1542-1544
Admixture and introgression have varied effects on population viability and fitness. Admixture might be an important source of new alleles, particularly for small, geographically isolated populations. However, admixture might also cause outbreeding depression if populations are adapted to different ecological or climatic conditions. Because of the emerging use of translocation and admixture as a conservation and wildlife management strategy to reduce genetic load (termed genetic rescue), the possible effects of admixture have practical consequences ( Bouzat et al. 2009 ; Hedrick & Fredrickson 2010 ). Importantly, genetic load and local adaptation are properties of individual loci and epistatic interactions among loci rather than properties of genomes. Likewise, the outcome and consequences of genetic rescue depend on the fitness effects of individual introduced alleles. In this issue of Molecular Ecology, Miller et al. (2012) use model‐based, population genomic analyses to document locus‐specific effects of a recent genetic rescue in the bighorn sheep population within the National Bison Range wildlife refuge (NBR; Montana, USA). They find a subset of introduced alleles associated with increased fitness in NBR bighorn sheep, some of which experienced accelerated introgression following their introduction. These loci mark regions of the genome that could constitute the genetic basis of the successful NBR bighorn sheep genetic rescue. Although population genomic analyses are frequently used to study local adaptation and selection (e.g. Hohenlohe et al. 2010 ; Lawniczak et al. 2010 ), this study constitutes a novel application of this analytical framework for wildlife management. Moreover, the detailed demographic data available for the NBR bighorn sheep population provide a rare and powerful source of information and allow more robust population genomic inference than is often possible.  相似文献   

3.
Bighorn sheep (Ovis canadensis) populations in the western United States have undergone widespread declines and extirpations since the late nineteenth century as a consequence of introduced diseases, competition with livestock, and unregulated hunting. Washington, Idaho, USA, and British Columbia, Canada were historically thought to be occupied by 2 bighorn lineages or subspecies: Rocky Mountain (O. c. canadensis) and California (O. c. californiana). The putative California lineage was completely extirpated in the United States, and reintroductions to reestablish populations were sourced directly or indirectly from a single region in southern British Columbia. Restoration efforts have attempted to maintain the diversity and divergence of these 2 lineages, sometimes referred to as subspecies although taxonomic classifications have changed over time. In this study we describe genetic variation in a subset of native and reintroduced herds of California and Rocky Mountain bighorn sheep. We examined genetic diversity and divergence between bighorn sheep herds using 15 microsatellite loci, including 4 loci linked to genes involved in immune function. We analyzed 504 samples from reintroduced herds in Washington (n = 10 California herds, n = 4 Rocky Mountain herds) and Idaho (n = 5 California), and source herds in Oregon (n = 1 Rocky Mountain) and British Columbia (n = 5 California, 1 Rocky Mountain). Genetic structure reflected known reintroduction history, and geographic proximity also was associated with decreased genetic divergence. Herds in Washington and Idaho sourced from California bighorn sheep were less genetically diverse than those sourced from Rocky Mountain herds. Also, levels of relatedness within and across California herds were higher than in Rocky Mountain herds and similar to what would be expected for full and half siblings. Lower diversity and higher relatedness among California herds is a concern for long-term fitness and likely related to past population bottlenecks, fewer source populations, and management history, such as entirely sourcing California herds from British Columbia. Genetic divergence of neutral loci between California and Rocky Mountain herds was greater than that of adaptive loci, potentially indicating that balancing selection has maintained similar genetic diversity across lineages in loci associated with immune and other adaptive functions. Thus, we recommend future reintroductions and augmentations should continue to use source populations from the appropriate California or Rocky Mountain lineage to avoid potential outbreeding depression and maintain possible adaptive differences. This could be accomplished by obtaining sheep from ≥1 source within the genetic lineage, while avoiding sourcing from admixed herds. Future work encompassing a broader geographic sampling of populations and a greater portion of the genome is necessary to better evaluate the degree to which contemporary divergence between lineages is associated with recent founder effects and genetic isolation or evolutionary adaptation. © 2021 The Wildlife Society  相似文献   

4.
Understanding the relative importance of heterosis and outbreeding depression over multiple generations is a key question in evolutionary biology and is essential for identifying appropriate genetic sources for population and ecosystem restoration. Here we use 2455 experimental crosses between 12 population pairs of the rare perennial plant Rutidosis leptorrhynchoides (Asteraceae) to investigate the multi-generational (F1, F2, F3) fitness outcomes of inter-population hybridization. We detected no evidence of outbreeding depression, with inter-population hybrids and backcrosses showing either similar fitness or significant heterosis for fitness components across the three generations. Variation in heterosis among population pairs was best explained by characteristics of the foreign source or home population, and was greatest when the source population was large, with high genetic diversity and low inbreeding, and the home population was small and inbred. Our results indicate that the primary consideration for maximizing progeny fitness following population augmentation or restoration is the use of seed from large, genetically diverse populations.  相似文献   

5.
Habitat fragmentation commonly causes genetic problems and reduced fitness when populations become small. Stocking small populations with individuals from other populations may enrich genetic variation and alleviate inbreeding, but such artificial gene flow is not commonly used in conservation owing to potential outbreeding depression. We addressed the role of long-term population size, genetic distance between populations and test environment for the performance of two generations of offspring from between-population crosses of the locally rare plant Ranunculus reptans L. Interpopulation outbreeding positively affected an aggregate measure of fitness, and the fitness superiority of interpopulation hybrids was maintained in the second offspring (F2) generation. Small populations benefited more strongly from interpopulation outbreeding. Genetic distance between crossed populations in neutral markers or quantitative characters was not important. These results were consistent under near-natural competition-free and competitive conditions. We conclude that the benefits of interpopulation outbreeding are likely to outweigh potential drawbacks, especially for populations that suffer from inbreeding.  相似文献   

6.
While introductions and supplementations using non-native and potentially domesticated individuals may have dramatic evolutionary effects on wild populations, few studies documented the evolution of genetic diversity and life-history traits in supplemented populations. Here, we investigated year-to-year changes from 1989 to 2009 in genetic admixture at 15 microsatellite loci and in phenotypic traits in an Atlantic salmon (Salmo salar) population stocked during the first decade of this period with two genetically and phenotypically distinct source populations. We detected a pattern of temporally increasing introgressive hybridization between the stocked population and both source populations. The proportion of fish returning to the river after a single winter at sea (versus several ones) was higher in fish assigned to the main source population than in local individuals. Moreover, during the first decade of the study, both single-sea-winter and multi-sea-winter (MSW) fish assigned to the main source population were smaller than local fish. During the second decade of the study, MSW fish defined as hybrids were lighter and smaller than fish from parental populations, suggesting outbreeding depression. Overall, this study suggests that supplementation with non-local individuals may alter not only the genetic diversity of wild populations but also life-history traits of adaptive significance.  相似文献   

7.
As populations become increasingly fragmented, managers are often faced with the dilemma that intentional hybridization might save a population from inbreeding depression but it might also induce outbreeding depression. While empirical evidence for inbreeding depression is vastly greater than that for outbreeding depression, the available data suggest that risks of outbreeding, particularly in the second generation, are on par with the risks of inbreeding. Predicting the relative risks in any particular situation is complicated by variation among taxa, characters being measured, level of divergence between hybridizing populations, mating history, environmental conditions and the potential for inbreeding and outbreeding effects to be occurring simultaneously. Further work on consequences of interpopulation hybridization is sorely needed with particular emphasis on the taxonomic scope, the duration of fitness problems and the joint effects of inbreeding and outbreeding. Meanwhile, managers can minimize the risks of both inbreeding and outbreeding by using intentional hybridization only for populations clearly suffering from inbreeding depression, maximizing the genetic and adaptive similarity between populations, and testing the effects of hybridization for at least two generations whenever possible.  相似文献   

8.
Many species have fragmented distribution with small isolated populations suffering inbreeding depression and/or reduced ability to evolve. Without gene flow from another population within the species (genetic rescue), these populations are likely to be extirpated. However, there have been only ~ 20 published cases of such outcrossing for conservation purposes, probably a very low proportion of populations that would potentially benefit. As one impediment to genetic rescues is the lack of an overview of the magnitude and consistency of genetic rescue effects in wild species, I carried out a meta‐analysis. Outcrossing of inbred populations resulted in beneficial effects in 92.9% of 156 cases screened as having a low risk of outbreeding depression. The median increase in composite fitness (combined fecundity and survival) following outcrossing was 148% in stressful environments and 45% in benign ones. Fitness benefits also increased significantly with maternal ΔF (reduction in inbreeding coefficient due to gene flow) and for naturally outbreeding versus inbreeding species. However, benefits did not differ significantly among invertebrates, vertebrates and plants. Evolutionary potential for fitness characters in inbred populations also benefited from gene flow. There are no scientific impediments to the widespread use of outcrossing to genetically rescue inbred populations of naturally outbreeding species, provided potential crosses have a low risk of outbreeding depression. I provide revised guidelines for the management of genetic rescue attempts.  相似文献   

9.
Introduction events can lead to admixture between genetically differentiated populations and bottlenecks in population size. These processes can alter the adaptive potential of invasive species by shaping genetic variation, but more importantly, they can also directly affect mean population fitness either increasing it or decreasing it. Which outcome is observed depends on the structure of the genetic load of the species. The ladybird Harmonia axyridis is a good example of invasive species where introduced populations have gone through admixture and bottleneck events. We used laboratory experiments to manipulate the relatedness among H. axyridis parental individuals to assess the possibility for heterosis or outbreeding depression in F1 generation offspring for two traits related to fitness (lifetime performance and generation time). We found that inter‐populations crosses had no major impact on the lifetime performance of the offspring produced by individuals from either native or invasive populations. Significant outbreeding depression was observed only for crosses between native populations for generation time. The absence of observed heterosis is indicative of a low occurrence of fixed deleterious mutations within both the native and invasive populations of H. axyridis. The observed deterioration of fitness in native inter‐population crosses most likely results from genetic incompatibilities between native genomic backgrounds. We discuss the implications of these results for the structure of genetic load in H. axyridis in the light of the available information regarding the introduction history of this species.  相似文献   

10.
Founder effect in an island population of bighorn sheep   总被引:1,自引:0,他引:1  
The Tiburon Island population of desert bighorn sheep has increased in size from 20 founders in 1975 to approximately 650 in 1999. This population is now the only population being used as the source stock for transplantations throughout northern Mexico. To evaluate the genetic variation in this population, we examined 10 microsatellite loci and a major histocompatibility complex (MHC) locus. The genetic variation was significantly less than found in other populations of the same subspecies in Arizona. Using a model that takes into account the effects of genetic drift on genetic distance, most of the genetic distance observed between the Tiburon population and Arizona samples could be explained. Because of the low genetic variation found in the Tiburon population, it is suggested that the Tiburon population should be supplemented with additional unrelated animals or that the transplant populations should be supplemented with unrelated animals.  相似文献   

11.
In fragmented populations, genetic drift and selection reduce genetic diversity, which in turn results in a loss of fitness or in a loss of evolvability. Genetic rescue, that is, controlled input of diversity from distant populations, may restore evolutionary potential, whereas outbreeding depression might counteract the positive effect of this strategy. We carried out self-pollination and crosses within and between populations in an experimental subdivided population of a selfing species, Triticum aestivum L., to estimate the magnitude of these two phenomena. Surprisingly, for a self-fertilizing species, we found significant inbreeding depression within each population for four of the six traits studied, indicating that mildly deleterious mutations were still segregating in these populations. The progeny of within- and between-population crosses was very similar, indicating low between-population heterosis and little outbreeding depression. We conclude that relatively large population effective sizes prevented fixation of a high genetic load and that local adaptation was limited in these recently diverged populations. The kinship coefficient estimated between the parents using 20 neutral markers was a poor predictor of the progeny phenotypic values, indicating that there was a weak link between neutral diversity and genes controlling fitness-related traits. These results show that when assessing the viability of natural populations and the need for genetic rescue, the use of neutral markers should be complemented with information about the presence of local adaptation in the subdivided population.  相似文献   

12.
Populations within a species may diverge through genetic drift and natural selection. Few studies report on population differentiation in autopolyploids where multiple gene copies and the ratio of cytoplasmic to nuclear genes differ from diploids and may influence divergence. In autotetraploid Campanula americana we created hybrids between populations that differed in geographic proximity and genome size. Differences in genome size (up to 6.5%) did not influence hybrid performance. In contrast, hybrid performance was strongly influenced by population proximity. F1 hybrids between distant populations performed poorly relative to their parents while hybrids between proximate populations outperformed their parents. Outbreeding depression was strongest for juvenile traits. The expression of outbreeding depression often differed between reciprocal hybrids indicating interactions between nuclear and cytoplasmic genes contribute to population differentiation. Because plants were grown under greenhouse conditions, the outbreeding depression was likely due to genetic (underdominance or loss of additive-by-additive epistasis) rather than ecological factors.  相似文献   

13.
Genetic rescue is a management intervention whereby a small population is supplemented with individuals from other populations in an attempt to reverse the effects of inbreeding and increased genetic load. One such rescue was recently documented in the population of bighorn sheep (Ovis canadensis) within the National Bison Range wildlife refuge (Montana, USA). Here, we examine the locus-specific effects of rescue in this population using a newly developed genome-wide set of 195 microsatellite loci and first-generation linkage map. We found that the rate of introgression varied among loci and that 111 loci, 57% of those examined, deviated from patterns of neutral inheritance. The most common deviation was an excess of homozygous genotypes relative to neutral expectations, indicative of directional selection. As in previous study of this rescue, individuals with more introduced alleles had higher reproductive success and longevity. In addition, we found 30 loci, distributed throughout the genome, which seem to have individual effects on these life history traits. Although the potential for outbreeding depression is a major concern when translocating individuals between populations, we found no evidence of such effects in this population.  相似文献   

14.
Interpopulation hybridization can increase the viability of small populations suffering from inbreeding and genetic drift, but it can also result in outbreeding depression. The outcome of hybridization can depend on various factors, including the level of genetic divergence between the populations, and the number of source populations. Furthermore, the effects of hybridization can change between generations following the hybridization. We studied the effects of population divergence (low vs. high level of divergence) and the number of source populations (two vs. four source populations) on the viability of hybrid populations using experimental Drosophila littoralis populations. Population viability was measured for seven generations after hybridization as proportion of populations facing extinction and as per capita offspring production. Hybrid populations established at the low level of population divergence were more viable than the inbred source populations and had higher offspring production than the large control population. The positive effects of hybridization lasted for the seven generations. In contrast, at the high level of divergence, the viability of the hybrid populations was not significantly different from the inbred source populations, and offspring production in the hybrid populations was lower than in the large control population. The number of source populations did not have a significant effect at either low or high level of population divergence. The study shows that the benefits of interpopulation hybridization may decrease with increasing divergence of the populations, even when the populations share identical environmental conditions. We discuss the possible genetic mechanisms explaining the results and address the implications for conservation of populations.  相似文献   

15.
Population‐level consequences of dispersal ability remain poorly understood, especially for marine animals in which dispersal is typically considered a species‐level trait governed by oceanographic transport of microscopic larvae. Transitions from dispersive (planktotrophic) to nondispersive, aplanktonic larvae are predicted to reduce connectivity, genetic diversity within populations, and the spatial scale at which reproductive isolation evolves. However, larval dimorphism within a species is rare, precluding population‐level tests. We show the sea slug Costasiella ocellifera expresses both larval morphs in Florida and the Caribbean, regions with divergent mitochondrial lineages. Planktotrophy predominated at 11 sites, 10 of which formed a highly connected and genetically diverse Caribbean metapopulation. Four populations expressed mainly aplanktonic development and had markedly reduced connectivity, and lower genetic diversity at one mitochondrial and six nuclear loci. Aplanktonic dams showed partial postzygotic isolation in most interpopulation crosses, regardless of genetic or geographic distance to the sire's source, suggesting that outbreeding depression affects fragmented populations. Dams from genetically isolated and neighboring populations also exhibited premating isolation, consistent with reinforcement contingent on historical interaction. By increasing self‐recruitment and genetic drift, the loss of dispersal may thus initiate a feedback loop resulting in the evolution of reproductive isolation over small spatial scales in the sea.  相似文献   

16.
Small and isolated populations face threats from genetic drift and inbreeding. To rescue populations from these threats, conservation biologists can augment gene flow into small populations to increase variation and reduce inbreeding depression. Spectacular success stories include greater prairie chickens in Illinois (Westermeier et al. 1998 ), adders in Sweden (Madsen et al. 1999 ) and panthers in Florida (Johnson et al. 2010 ). However, we also know that performing such crosses risks introducing genes that may be poorly adapted to local conditions or genetic backgrounds. A classic example of such ‘outbreeding depression’ occurred when different subspecies of ibex from Turkey and the Sinai were introduced to assist recovery of an ibex population in Czechoslovakia (Templeton 1986 ). Despite being fertile, the hybrids birthed calves too early, causing the whole population to disappear. In the face of uncertainty, conservation biologists have tended to respect genetic identity, shying away from routinely crossing populations. In this issue of Molecular Ecology, Frankham ( 2015 ) compiles empirical data from experimental studies to assess the costs and benefits of between‐population crosses (Fig.  1 ). Crosses screened to exclude those involving highly divergent populations or distinct habitats show large heterosis with few apparent risks of outbreeding depression. This leads Frankham to advocate for using assisted gene flow more widely. But do the studies analysed in this meta‐analysis adequately test for latent outcrossing depression?  相似文献   

17.
A possible effect of interpopulation hybridization is either outbreeding depression, as a consequence of breakdown of coadapted gene complexes which can increase developmental instability (DI) of the traits, or increased heterozygosity, which can reduce DI. One of the principal methods commonly used to estimate DI is the variability of fluctuating asymmetry (FA). We analysed the effect of interpopulation hybridization in Drosophila subobscura through the variability in the wing size and the FA of wing length and width for both sexes in parental, F1 and F2 generations. The results of the wing size per se in intra- and interpopulation hybrids of D. subobscura do not explicitly reveal the significance of either of the two hypotheses. However, the results of the FA of the wing traits give a different insight. The FA of wing length and width generally increases in interpopulation crosses in F1 with respect to the FA in the parental generation, which suggests the possibility that outbreeding depression occurred in the first generation after the hybridization event. We generally observed that the FA values for the wing length and width of interpopulation hybrids were higher in F1 and F2 generations, compared to intrapopulation hybrids in same generations. These results suggest that the association between coadaptive genes with the same evolutionary history are the most probable mechanism that maintains the developmental homeostasis in Drosophila subobscura populations.  相似文献   

18.
We used behavioural observations and mitochondrial DNA (mtDNA) sequence analysis to examine demographic and genetic structure within and among home-range groups of desert bighorn sheep (Oviscanadensis) ewes in the Peninsular Ranges of southern California, USA. We identified substantial genetic variation in the first 515 bp of the mtDNA control region and determined that seven haplotypes were distributed in a nonrandom fashion among these ewe subpopulations. Although a significant (P < 0.01) amount of mtDNA variation (33%) was partitioned among home-range groups, we did not find strong evidence for matrilineal substructuring within these groups. Based on analyses of molecular variance, and comparisons of behavioural associations and distances between centres of activity, we concluded that within a given home-range group, bighorn sheep ewes generally associate with other ewes based on their availability rather than their matrilineal relationships. Our results also supported the conclusion that multiple ewe subpopulations exist within the Peninsular Ranges, and that these subpopulations are the most basic demographic and genetic units.  相似文献   

19.
ABSTRACT Understanding colonization is vital for managing fragmented populations. We employed mitochondrial DNA haplotypes and 14 microsatellite (nuclear DNA) markers to infer the origins of newly established populations of desert bighorn sheep (Ovis canadensis nelsoni) and to assess loss of genetic diversity during natural colonizations. We used haplotype distribution, F-statistics, Bayesian population clustering, and assignment tests to infer source populations for 3 recent colonies and identified a previously undetected colonization from multiple source populations. Allelic richness declined in 3 of 4 colonies in comparison to the primary source populations, but not as much as has been reported for translocated populations. Heterozygosity declined in only one colony. We also demonstrated that both native and translocated desert bighorn sheep have naturally recolonized empty habitats and suggest that colonization may partially offset population extinction in the region as long as connectivity is maintained. Genetic techniques and mitochondrial DNA haplotypes we described will allow managers to determine the origins of future colonizations by bighorn sheep in California, USA, and prioritize protection of linkages between known sources and colonies.  相似文献   

20.
Leimu R  Kloss L  Fischer M 《Ecology letters》2008,11(10):1101-1110
Inbreeding is common in plant populations and can affect plant fitness and resistance against herbivores. These effects are likely to depend on population history. In a greenhouse experiment with plants from 17 populations of Lychnis flos-cuculi, we studied the effects of experimental inbreeding on resistance and plant fitness. Depending on the levels of past herbivory and abiotic factors at the site of plant origin, we found either inbreeding or outbreeding depression in herbivore resistance. Furthermore, when not damaged experimentally by snail herbivores, plants from populations with higher heterozygosity suffered from inbreeding depression and those from populations with lower heterozygosity suffered from outbreeding depression. These effects of inbreeding and outbreeding were not apparent under experimental snail herbivory. We conclude that inbreeding effects on resistance and plant fitness depend on population history. Moreover, herbivory can mask inbreeding effects on plant fitness. Thus, understanding inbreeding effects on plant fitness requires studying multiple populations and considering population history and biotic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号