首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of climate change on pest phenology and population size are highly variable. Understanding the impacts of localized climate change on pest distribution and phenology is helpful for improving integrated pest management strategies. Here, the population dynamics of cotton bollworms (Helicoverpa armigera) from Maigaiti County, south Xinjiang, and Shawan County, north Xinjiang, China, were analyzed using a 29‐year dataset at lower latitudes and a 23‐year dataset at higher latitudes to determine the effects of climate change on the population dynamics of H. armigera. The results showed that all generations of H. armigera at both sites showed increasing trends in population size with climate warming. Abrupt changes in phenology and population number occurred after abrupt temperature changes. Climate change had a greater effect on the phenology of H. armigera at higher latitudes than at lower latitudes and led to a greater increase in population size at lower latitudes than at higher latitudes; the temperature increase at higher latitudes will cause a greater increase in the adult moth population size in the future compared to that at lower latitudes; and abrupt changes in the phenology, temperature increase, and population size at lower latitudes occurred earlier than those at higher latitudes. Thus, it is necessary to develop sustainable management strategies for Helicoverpa armigera at an early stage.  相似文献   

2.
The interactions between plants and insects play an important role in ecosystems. Climate change and cropping patterns can affect herbivorous pest insect dynamics. Understanding the reasons for population fluctuations can help improve integrated pest management strategies. Here, a 25‐year dataset on climate, cropping planting structure, and the population dynamics of cotton bollworms (Helicoverpa armigera) from Bachu County, south Xinjiang, China, was analyzed to assess the effects of changes in climate and crop planting structure on the population dynamics of H. armigera. The three generations of H. armigera showed increasing trends in population size with climate warming, especially in the third generation. The relative abundances of the first and second generations decreased, but that of the third generation increased. Rising temperature and precipitation produced different impacts on the development of different generations. The population numbers of H. armigera increased with the increase in the non‐Bacillus thuringiensis (Bt) cotton‐planted area. Asynchrony of abrupt changes existed among climate change, crop flowering dates, and the phenology of H. armigera moths. The asynchronous responses in crop flowering dates and phenology of H. armigera to climate warming would expand in the future. The primary factors affecting the first, second, and third generations of moths were Tmean in June, the last appearance date of the second generation of moths, and the duration of the third generation of moths, respectively. To reduce the harm to crops caused by H. armigera, Bt cotton should be widely planted.  相似文献   

3.
Knowing how climate change affects the population dynamics of insect pests is critical for the future of integrated pest management. Rising winter temperatures from global warming can drive increases in outbreaks of some agricultural pests. In contrast, here we propose an alternative hypothesis that both extremely cold and warm winters can mismatch the timing between the eclosion of overwintering pests and the flowering of key host plants. As host plants normally need higher effective cumulative temperatures for flowering than insects need for eclosion, changes in flowering time will be less dramatic than changes in eclosion time, leading to a mismatch of phenology on either side of the optimal winter temperature. We term this the “seesaw effect.” Using a long‐term dataset of the Old World cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in northern China, we tested this seesaw hypothesis by running a generalized additive model for the effects of the third generation moth in the preceding year, the winter air temperature, the number of winter days below a critical temperature and cumulative precipitation during winter on the demography of the overwintering moth. Results confirmed the existence of the seesaw effect of winter temperature change on overwintering populations. Pest management should therefore consider the indirect effect of changing crop phenology (whether due to greenhouse cultivation or to climate change) on pest outbreaks. As arthropods from mid‐ and high latitudes are actually living in a cooler thermal environment than their physiological optimum in contrast to species from lower latitudes, the effects of rising winter temperatures on the population dynamics of arthropods in the different latitudinal zones should be considered separately. The seesaw effect makes it more difficult to predict the average long‐term population dynamics of insect pests at high latitudes due to the potential sharp changes in annual growth rates from fluctuating minimum winter temperatures.  相似文献   

4.
Although growth response functions have previously been developed for lodgepole pine (Pinus contorta Dougl. ex Loud.) populations in British Columbia, new analyses were conducted: (1) to demonstrate the merit of a new local climate model in genecological analysis; (2) to highlight new methods for deriving response functions; and (3) to evaluate the impacts of management options for existing geographically defined seed planning units (SPUs) for reforestation. Results of this study suggest that new methods for anchoring population response functions, and a multivariate approach for incorporating climate variables into a single model, considerably improve the reliability of these functions. These functions identified a small number of populations in central areas of the species distribution with greater growth potential over a wide range of mean annual temperature (MAT). Average productivity of lodgepole pine is predicted to increase (up to 7%) if moderate warming (~2°C MAT) occurs in the next few decades as predicted, although productivity would substantially decline in some SPUs in southern BC. Severe global warming (>3°C MAT) would result in either a drastic decline in productivity or local populations being extirpated in southern SPUs. New deployment strategies using the best seed sources for future reforestation may not only be able to mitigate the negative impact of global warming, but may even be able to increase productivity in some areas.  相似文献   

5.
Tree growth and survival were assessed in 283 populations of Scots pine ( Pinus sylvestris L.) originating from a broad geographic range and grown at 90 common-garden experimental sites across Europe, and in 101 populations grown at 14 sites in North America. Growth and survival were analysed in response to climatic transfer distance, the difference in mean annual temperature (MAT) between the site and the population origin. Differences among populations at each site, and across sites for regional groups of populations, were related to climate transfer distance, but in opposite ways in the northern vs. southern parts of the species range. Climate transfers equivalent to warming by 1–4 °C markedly increased the survival of populations in northern Europe (≥ 62°N, < 2 °C MAT) and modestly increased height growth ≥ 57°N but decreased survival at < 62°N and modestly decreased height growth at < 54°N latitude in Europe. Thus, even modest climate warming will likely influence Scots pine survival and growth, but in distinct ways in different parts of the species range.  相似文献   

6.
三化螟种群动态分析及防治   总被引:3,自引:0,他引:3  
蓝学明  杨凤  梁葵珍 《昆虫知识》2002,39(2):113-115
分析了 1 980~ 2 0 0 0年三化螟种群数量变动情况 ,发现年度间的变动不一致 ,有明显间歇性。认为冬春气候 (气温、雨量 )、耕作制度、天敌因素等与三化螟为害密切相关 ,并提出科学实用的防治方法  相似文献   

7.
Global warming has caused changes in temperature and precipitation patterns, and the subsequent effects on the dynamics of soil respiration (Rs) have had a significant impact on the global carbon balance. Despite numerous studies, the interacting responses of Rs to multiple causes of global change are unknown. We combined studies of 178 temperature treatments and 134 precipitation treatments in a global meta-analysis to examine the response of Rs to temperature and precipitation treatments in terrestrial ecosystems. The results showed that the average warming and precipitation increased Rs by 13.1% and 33.1%, respectively. The effect sizes of Rs were positive for other global variables (mean annual temperature (MAT), mean annual precipitation (MAP), elevation and duration of experiment (DUR)). Moreover, the effect size of Rs decreased exponentially with increasing DUR warming and decreased parabolically with increasing precipitation change, indicating a strong dependence of Rs on global climate conditions. Moreover, the two-way and multi-dimensional interactions of global changing factors have created the positive effects of the individual effects. Rainfall is a key factor in the interaction experiments between precipitation and warming in farmland and urban grassland ecosystems, and other environmental factors interacted significantly with precipitation and temperature, indirectly altering Rs. As multiple global climate change factors often occur simultaneously, it is important to conduct long-term multifactorial experiments to assess the response of Rs to global changes.  相似文献   

8.
Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro‐ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37‐year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time‐series analysis provided strong evidence explaining long‐term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro‐ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities.  相似文献   

9.
Satellite data indicate significant advancement in alpine spring phenology over decades of climate warming, but corresponding field evidence is scarce. It is also unknown whether this advancement results from an earlier shift of phenological events, or enhancement of plant growth under unchanged phenological pattern. By analyzing a 35‐year dataset of seasonal biomass dynamics of a Tibetan alpine grassland, we show that climate change promoted both earlier phenology and faster growth, without changing annual biomass production. Biomass production increased in spring due to a warming‐induced earlier onset of plant growth, but decreased in autumn due mainly to increased water stress. Plants grew faster but the fast‐growing period shortened during the mid‐growing season. These findings provide the first in situ evidence of long‐term changes in growth patterns in alpine grassland plant communities, and suggest that earlier phenology and faster growth will jointly contribute to plant growth in a warming climate.  相似文献   

10.
Permafrost thaw resulting from climate warming may dramatically change the succession and carbon dynamics of northern ecosystems. To examine the joint effects of regional temperature and local species changes on peat accumulation following thaw, we studied peat accumulation across a regional gradient of mean annual temperature (MAT). We measured aboveground net primary production (AGNPP) and decomposition over 2 years for major functional groups and used these data to calculate a simple index of net annual aboveground peat accumulation. In addition, we collected cores from six adjacent frozen and thawed bog sites to document peat accumulation changes following thaw over the past 200 years. Aboveground biomass and decomposition were more strongly controlled by local succession than regional climate. AGNPP for some species differed between collapse scars and associated permafrost plateaus and was influenced by regional MAT. A few species, such as Picea mariana trees on frozen bogs and Sphagnum mosses in thawed bogs, sequestered a disproportionate amount of peat; in addition, changes in their abundance following thaw changed peat accumulation. 210Pb-dated cores indicated that peat accumulation doubles following thaw and that the accumulation rate is affected by historical changes in species during succession. Peat accumulation in boreal peatlands following thaw was controlled by a complex mix of local vegetation changes, regional climate, and history. These results suggest that northern ecosystems may show responses more complex than large releases of carbon during transient warming. Received 8 August 2000; accepted 12 January 2001.  相似文献   

11.
With rapid climate warming, ecosystems will probably exhibit complex dynamics because local factors and life history attributes of species mediate the effects of regional climate change. To assess the relative importance of local vs. regional processes on permafrost formation in boreal peatlands, I sampled for permafrost and factors affecting its formation in 38 collapse scars across a 4 °C mean annual temperature (MAT) gradient in the discontinuous permafrost zone of northern Manitoba, Canada. Three complimentary approaches were used to model factors important to permafrost formation at both local and regional scales. In the first analysis, a mechanistic, spatial model of permafrost formation was developed as a function of Picea mariana size and proximity. In the second approach, permafrost formation was modelled as a function of two local factors, diameter of Picea mariana trees and emergent organic matter depth, and the regional factor, mean annual temperature (MAT). Finally, published aerial photography data were used to determine whether the proportion of bogs with permafrost changes across a MAT gradient. Results show that permafrost formation in boreal permafrost peatlands is best described as a locally driven process within regional climatic constraints. At local scales of 1–2 meters, the spatial and size distributions of trees controlled the spatial distribution of permafrost. At regional scales, tree size was a significantly better predictor than emergent organic matter or MAT. These results suggest that transient models of discontinuous permafrost based only on climate may poorly predict changes in vegetation and permafrost.  相似文献   

12.
The flight activity of yellow stem borer Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae) peaked in the months of April-May, May-June, August-September and October. The number of egg masses and the number of adults attracted to light sources were the indicators of S. incertulas flight activity. The rice varieties TKM6, IR22, IR60, IR66 and IR74 were infested at 7, 10, 12 and 16 wk after planting with 5, 10, 20 and 40 neonates of S. incertulas. All varieties except IR66 were susceptible to dead heart damage by S. incertulas. When the rice varieties TKM6, BPIRi2, BPIRi4, IR22, IR36, IR60, IR66 and IR74 were treated with carbofuran insecticide at the time of peak oviposition by S. incertulas in the field, the dead heart damage on all the varieties was significantly reduced in comparison with the untreated plots. Indiscriminate routine insecticidal treatments (fixed schedule) can be replaced by a treat-when-necessary schedule based on the population dynamics of S. incertulas.  相似文献   

13.
Lud k Berec 《Oikos》2019,128(7):972-983
Understanding how climate change affects population dynamics is crucial for assessing future of biodiversity. Here I ask how can Allee effects, occurring when mean individual fitness is reduced in rare populations, respond to increasing temperature. Despite the role Allee effects play in ecology of invasive, threatened and harvested populations, impacts of climate change on Allee effects are practically unknown. Analysis of two population models reveals that whereas the Allee effect driven by predation generally weakens as temperature increases, the Allee effect due to need of finding mates is predicted to become stronger when warming occurs. For the former model, the metabolic theory suggests that with increasing temperature prey growth rate should increase faster than predator attack rate. Increasing temperature thus weakens the Allee effect. In the latter, gypsy moth population model, mating rate increases with warming due to enhanced female?male encounter rate and temperature‐induced modifications in female and male adult emergence distributions. However, male and female mortality rates increase, too and the net effect is strengthening of the Allee effect. These results have repercussions also for pest control, indicating that augmentation of biocontrol agents may perhaps be not as effective as using pesticides or disrupting mating.  相似文献   

14.
Understanding population dynamics is critical for the management of animal populations. Comparatively little is known about the relative importance of endogenous (i.e. density‐dependent) and exogenous (i.e. density‐independent) factors on the population dynamics of amphibians with complex life cycles. We examined the potential effects of density‐dependent and ‐independent (i.e. climatic) factors on population dynamics by analyzing a 15‐yr time series data of the agile frog Rana dalmatina population from Târnava Mare Valley, Romania. We used two statistical models: 1) the partial rate correlation function to identify the feedback structure and the potential time lags in the time series data and 2) a Gompertz state‐space model to simultaneously investigate direct and delayed density dependence as well as climatic effects on population growth rate. We found evidence for direct negative density dependence, whereas delayed density dependence and climate did not show a strong influence on population growth rate. Here we demonstrated that direct density dependence rather than delayed density dependence or climate determined the dynamics of our study population. Our results confirm the findings of many experimental studies and suggest that density dependence may buffer amphibian populations against environmental stress. Consequently, it may not be easy to scale up from individual‐level effects to population‐level effects.  相似文献   

15.
The degree to which climate warming will stimulate soil organic carbon (SOC) losses via heterotrophic respiration remains uncertain, in part because different or even opposite microbial physiology and temperature relationships have been proposed in SOC models. We incorporated competing microbial carbon use efficiency (CUE)–mean annual temperature (MAT) and enzyme kinetic–MAT relationships into SOC models, and compared the simulated mass‐specific soil heterotrophic respiration rates with multiple published datasets of measured respiration. The measured data included 110 dryland soils globally distributed and two continental to global‐scale cross‐biome datasets. Model–data comparisons suggested that a positive CUE–MAT relationship best predicts the measured mass‐specific soil heterotrophic respiration rates in soils distributed globally. These results are robust when considering models of increasing complexity and competing mechanisms driving soil heterotrophic respiration–MAT relationships (e.g., carbon substrate availability). Our findings suggest that a warmer climate selects for microbial communities with higher CUE, as opposed to the often hypothesized reductions in CUE by warming based on soil laboratory assays. Our results help to build the impetus for, and confidence in, including microbial mechanisms in soil biogeochemical models used to forecast changes in global soil carbon stocks in response to warming.  相似文献   

16.
三化螟种群动态、大发生原因及防治对策   总被引:2,自引:0,他引:2  
报道了江淮南部水稻螟虫演变规律 ,总结了近年来三化螟的发生新特点 ,即发生期提早、主害代提前、发生盛期拉长、主害代数增加、峰次明显增多以及田间虫量超历史水平。分析其回升及暴发原因 ,主要有耕作制度变更、品种与茬口布局变化、栽培方式多样化、暖冬以及天敌寄生率下降。提出了防治对策包括栽培防治、灌水灭蛹和药剂治螟 ,其中药剂治螟的关键是适期施药、适当增加防治次数、合理选用农药和改进施药技术。  相似文献   

17.
1. A central question in ecology is to separate the relative contribution of density dependence and stochastic influences to annual fluctuations in population size. Here we estimate the deterministic and stochastic components of the dynamics of different European populations of white stork Ciconia ciconia. We then examined whether annual changes in population size was related to the climate during the breeding period (the 'tap hypothesis' sensu Saether, Sutherland & Engen (2004, Advances in Ecological Research, 35, 185 209) or during the nonbreeding period, especially in the winter areas in Africa (the 'tube hypothesis'). 2. A general characteristic of the population dynamics of this long-distance migrant is small environmental stochasticity and strong density regulation around the carrying capacity with short return times to equilibrium. 3. Annual changes in the size of the eastern European populations were correlated by rainfall in the wintering areas in Africa as well as local weather in the breeding areas just before arrival and in the later part of the breeding season and regional climate variation (North Atlantic Oscillation). This indicates that weather influences the population fluctuations of white storks through losses of sexually mature individuals as well as through an effect on the number of individuals that manages to establish themselves in the breeding population. Thus, both the tap and tube hypothesis explains climate influences on white stork population dynamics. 4. The spatial scale of environmental noise after accounting for the local dynamics was 67 km, suggesting that the strong density dependence reduces the synchronizing effects of climate variation on the population dynamics of white stork. 5. Several climate variables reduced the synchrony of the residual variation in population size after accounting for density dependence and demographic stochasticity, indicating that these climate variables had a synchronizing effect on the population fluctuations. In contrast, other climatic variables acted as desynchronizing agents. 6. Our results illustrate that evaluating the effects of common environmental variables on the spatio-temporal variation in population dynamics require estimates and modelling of their influence on the local dynamics.  相似文献   

18.
Recent research has linked climate warming to global declines in caribou and reindeer (both Rangifer tarandus) populations. We hypothesize large‐scale climate patterns are a contributing factor explaining why these declines are not universal. To test our hypothesis for such relationships among Alaska caribou herds, we calculated the population growth rate and percent change of four arctic herds using existing population estimates, and explored associations with indices of the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO). The AO, which more strongly affects eastern Alaska, was negatively associated with the population trends of the Porcupine Caribou Herd and Central Arctic Herd, the easternmost of the herds. We hypothesize that either increased snowfall or suboptimal growing conditions for summer forage plants could explain this negative relationship. Intensity of the PDO, which has greatest effects in western Alaska, was negatively associated with the growth rate of the Teshekpuk Caribou Herd in northwestern Alaska, but the Western Arctic Herd in western Alaska displayed the opposite trend. We suggest that the contrasting patterns of association relate to the spatial variability of the effects of the PDO on western and northwestern Alaska. Although predation and winter range quality have often been considered the primary causes of population variation, our results show that large‐scale climate patterns may play an important role in caribou population dynamics in arctic Alaska. Our findings reveal that climate warming has not acted uniformly to reduce caribou populations globally. Further research should focus on the relative importance of mechanisms by which climate indices influence caribou population dynamics.  相似文献   

19.
Temperature and its impact on fitness are fundamental for understanding range shifts and population dynamics under climate change. Geographic climate heterogeneity, behavioral and physiological plasticity, and thermal adaptation to local climates make predicting the responses of species to climate change complex. Using larvae from seven geographically distinct wild populations in the eastern United States of the non‐native forest pest Lymantria dispar dispar (L.), we conducted a simulated reciprocal transplant experiment in environmental chambers using six custom temperature regimes representing contemporary conditions near the southern and northern extremes of the US invasion front and projections under two climate change scenarios for the year 2050. Larval growth and development rates increased with climate warming compared with current thermal regimes and tended to be greater for individuals originally sourced from southern rather than northern populations. Although increases in growth and development rates with warming varied somewhat by region of the source population, there was not strong evidence of local adaptation, southern populations tended to outperform those from northern populations in all thermal regimes. Our study demonstrates the utility of simulating thermal regimes under climate change in environmental chambers and emphasizes how the impacts from future increases in temperature can vary based on geographic differences in climate‐related performance among populations.  相似文献   

20.
Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4–7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号