首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of the study of thePseudomonas fluorescens IMV 247 (biovar II) lipopolysaccharide (LPS) isolated from the dry bacterial mass by Westphal’s method and purified by repeated ultracentrifugation are presented. The macromolecular organization of the LPS is characterized by the presence of S and R forms of LPS molecules in a 1 : 1 ratio. The structural components of the LPS molecule-lipid A, the core oligosaccharide, and the 0-specific polysaccharide-were isolated and characterized. 3-Hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, and dodecanoic acids proved to be the main lipid A fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic portion. Glucose, galactose, arabinose, rhamnose, glucosamine, galactosamine alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulonate (KDO) were revealed in the heterogeneous fraction of the core oligosaccharide. The 0-specific polysaccharide chain was composed of repeating tetrasaccharide units consisting of L-rhamnose (L-Rha), 3,6-dideoxy-3-[(S)-3-hydroxybutyramido]-D-glucose (D-Qui3NHb), 2-acetamido-2,4,6-trideoxy4 [(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NHb), and 2-acetamido-2-deoxy-D-galacturonic acid (D-GalNAcA) residues. A peculiarity of the 0-specific polysaccharide was that it released, upon partial acid hydrolysis, the nonreducing disaccharide GalNAcA→ QuiNAc4NHb with a 3-hydroxybutyryl group glycosylated intramolecularly with a QuiN4N residue. Double immunodiffusion in agar and lipopolysaccharide precipitation reactions revealed no serological interrelationship between the strain studied and theP. fluorescens strains studied earlier.  相似文献   

2.
The lipopolysaccharide (LPS) preparation isolated from the bacterial mass of Pseudomonas fluorescens IMV 2366 (biovar III) by Westphal's method and purified by repeated ultracentrifugation was characterized by the presence of the S- and R-forms of molecules. The following structural portions of the LPS molecule were obtained in the individual state and characterized: lipid A, core oligosaccharide, and O-specific polysaccharide. The main components of the lipid A hydrophobic moiety were 3-hydoxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, and hexadecanoic fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic moiety. Rhamnose, glucose, galactose, glucosamine, galactosamine, alanine, phosphoethanolamine, phosphorus, 2-keto-3-desoxyoctulosonic acid (KDO), as well as 2-amino-2,6-didesoxygalactose (FucN) and 3-amino-3,6-didesoxyglucose (Qui3N), were revealed in the composition of the core oligosaccharide fractions. O-specific polysaccharide chains were established to be composed of repeating trisaccharide units consisting of residues of L-rhamnose (L-Rha), 2-acetamido-2,6-didesoxy-D-galactose (D-FucNAc), and 3-acylamido-3,6-didesoxy-D-glucose (D-Qui3NAcyl), where Acyl = 3-hydroxy-2,3-dimethyl-5-hydroxyprolyl. Neither double immunodiffusion in agar not the immunoenzyme assay revealed serological relations between the strain studied and the P. fluorescens strains studied earlier.  相似文献   

3.
Lipopolysaccharide (LPS) of the Pseudomonas fluorescens strain IMV 7769 (biovar I) was isolated and investigated. Fractions of the structural parts of the LPS macromolecule, lipid A, the core oligosaccharide, and the O-specific polysaccharide (O-PS), were obtained in a homogeneous state. 2-Hydroxydecanoic, 3-hydroxydecanoic, dodecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, hexadecanoic, octadecanoic, hexadecenoic, and octadecenoic fatty acids were identified in lipid A. In the hydrophilic moiety of lipid A, after acid hydrolysis, several amino acids, phosphoethanolamine, glucosamine, and three unidentified peaks forming a separate cluster together with glucosamine were found. Lipid A was shown to be phosphorylated. Glucose, fucose, rhamnose, glucosamine, galactosamine, two unidentified amino sugars, 2-keto-3-deoxyoctulonic acid (KDO), heptose, ethanolamine, phosphoethanolamine, and alanine were identified in the core oligosaccharide. O-PS of the LPS consisted of repeating trisaccharide fragments that included residues of amino sugars: 4-acetamido-4,6-dideoxy-D-galactose, 2-acetamido-2,6-dideoxy-D-glucose, and 2-acetamido-2,6-dideoxy-L-glucose. During growth, the strain under study excreted exocellular LPS (ELPS) into the medium. The LPS studied was similar to the LPS of the earlier investigated strains P. fluorescens (biovar I) IMV 1152 and IMV 1433 in the structure of O-PS, but differed from them in the composition of both lipid A and the core oligosaccharide. The LPS of the strain studied differed from LPS of the type strain P. fluorescens IMV 4125 (ATCC 13525) in all characteristics determined.  相似文献   

4.
The lipopolysaccharide (LPS) preparation isolated from the bacterial mass of Pseudomonas fluorescens IMV 2366 (biovar III) by Westphal's method and purified by repeated ultracentrifugation contained S- and R-forms of molecules. The structural components of the LPS molecule—lipid A, core oligosaccharide, and O-specific polysaccharide—were obtained in the individual state and characterized. The main components of the lipid A hydrophobic moiety were 3-hydoxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, and hexadecanoic fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic moiety. Rhamnose, glucose, galactose, glucosamine, galactosamine, alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulosonic acid (KDO), as well as 2-amino-2,6-dideoxygalactose (FucN) and 3-amino-3,6-dideoxyglucose (Qui3N), were revealed in the composition of the core oligosaccharide fractions. O-specific polysaccharide chains were composed of repeating trisaccharide units consisting of residues of L-rhamnose (L-Rha), 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc), and 3-acylamido-3,6-dideoxy-D-glucose (D-Qui3NAcyl), where Acyl = 3-hydroxy-2,3-dimethyl-5-hydroxyprolyl. Neither double immunodiffusion in agar not the immunoenzymatic assay revealed serological relations between the strain studied and the P. fluorescens strains studied earlier.  相似文献   

5.
Results of studies of the structurally unique O-chains of lipopolysaccharides, which were isolated from the dry biomass of Pseudomonas fluorescens IMB 2108 (biovar II) and IMB 2111 (biovar IV) by the Westphal technique and purified by repeated ultracentrifugation, are reported. The bulk of the lipopolysaccharide preparations contained S- and R-molecules at an average molar ratio of 1: 2. The main components of the hydrophobic moiety of lipid A were 3-hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, hexadecanoic, and octadecanoic acids, as well as hexadecenoic and octadecenoic acids. Glucosamine and phosphoethanolamine were identified as components of the hydrophilic moiety of lipid A. The degree of lipid A phosphorylation amounted to 3-4%. Fractions of the core oligosaccharide contained glucose, galactose, mannose, rhamnose, arabinose, glucosamine (only in strain IMB 2108), alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulosonic acid (KDO). Heptose was present in trace amounts. O-specific polysaccharide chains were represented by a linear polymer of D-glucose units, which were linked together via alpha-(1,4) glycoside bonds. The existence of P. fluorescens strains that have alpha-1,4-glucan as the O-chain of their lipopolysaccharides has not been described before.  相似文献   

6.
From the biomass of five Pseudomonas fluorescens biovar I strains, including the P. fluorescens type strain IMV 4125 (ATCC 13525), lipopolysaccharides (LPS) were isolated (by extraction with a phenol-water mixture followed by repeated ultracentrifugation), as well as individual structural components of the LPS macromolecule: lipid A, the core oligosaccharide, and O-specific polysaccharide (O-PS). 3-Hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, hexadecanoic, octadecanoic, hexadecenoic, and octadecenoic fatty acids were present in lipid A of the LPS of all the strains studied. Glucosamine, ethanolamine, and phosphoethanolamine were revealed in the lipid A hydrophilic part of all of KDO, a trace amount of heptoses, ethanolamine, phosphoethanolamine, alanine, and phosphorus were identified as the main core components. Interstrain differences in the core oligosaccharide composition were revealed. Structural analysis showed that the O-PS of the type strain, as distinct from that of other strains, is heterogeneous and contains two types of repetitive units, including (1) three L-rhamnose residues (L-Rha), one 3-acetamide-3,6-dideoxy-D-galactose residue (D-Fuc3NAc) as a branching substitute of the L-rhamnan chain and (2) three L-Rha residues and two branching D-Fuc3NAc residues. The type strain is also serologically distinct from other biovar I strains due to the LPS O-chain structure, which is similar to those of the strains of the species Pseudomonas syringae, including the type strain. The data of structural analysis agree well with the results of immunochemical studies of LPS.  相似文献   

7.
Results of studies of the structurally unique O-chains of lipopolysaccharides, which were isolated from the dry biomass of Pseudomonas fluorescens IMB 2108 (biovar II) and IMB 2111 (biovar IV) by the Westphal technique and purified by repeated ultracentrifugation, are reported. The bulk of the lipopolysaccharide preparations contained S- and R-molecules at an average molar ratio of 1 : 2. The main components of the hydrophobic moiety of lipid A were 3-hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, hexadecanoic, and octadecanoic acids, as well as hexadecenoic and octadecenoic acids. Glucosamine and phosphoethanolamine were identified as components of the hydrophilic moiety of lipid A. The degree of lipid A phosphorylation amounted to 3–4%. Fractions of the core oligosaccharide contained glucose, galactose, mannose, rhamnose, arabinose, glucosamine (only in strain IMB 2108), alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulosonic acid (KDO). Heptose was present in trace amounts. O-specific polysaccharide chains were represented by a linear polymer of D-glucose units, which were linked together via α-(1,4) glycoside bonds. The existence of P. fluorescens strains that have α-1,4-glucan as the O-chain of their lipopolysaccharides has not been described before.  相似文献   

8.
From the biomass of five Pseudomonas fluorescensbiovar I strains, including the P. fluorescenstype strain IMV 4125 (ATCC 13525), lipopolysaccharides (LPS) were isolated (by extraction with a phenol–water mixture followed by repeated ultracentrifugation), as well as individual structural components of the LPS macromolecule: lipid A, the core oligosaccharide, and O-specific polysaccharide (O-PS). 3-Hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, hexadecanoic, octadecanoic, hexadecenoic, and octadecenoic fatty acids were present in lipid A of the LPS of all the strains studied. Glucosamine, ethanolamine, and phosphoethanolamine were revealed in the lipid A hydrophilic part of all of the strains. Glucose, rhamnose, mannoze, glucosamine, galactosamine, KDO, a trace amount of heptoses, ethanolamine, phosphoethanolamine, alanine, and phosphorus were identified as the main core components. Interstrain differences in the core oligosaccharide composition were revealed. Structural analysis showed that the O-PS of the type strain, as distinct from that of other strains, is heterogeneous and contains two types of repetitive units, including (1) three L-rhamnose residues (L-Rha), one 3-acetamide-3,6-dideoxy-D-galactose residue (D-Fuc3NAc) as a branching substitute of the L-rhamnan chain and (2) three L-Rha residues and two branching D-Fuc3NAc residues. The type strain is also serologically distinct from other biovar I strains due to the LPS O-chain structure, which is similar to those of the strains of the species Pseudomonas syringae, including the type strain. The data of structural analysis agree well with the results of immunochemical studies of LPS.  相似文献   

9.
Structural studies have been carried out on the O-specific fraction from the lipopolysaccharide of Pseudomonas aeruginosa NCTC 8505, Habs serotype 03. The O-specific polysaccharide has a tetrasaccharide repeating-unit containing residues of L-rhamnose (Rha), 2-acetamido-2-deoxy-D-glucose (GlcNAc), 2-acetamido-2-deoxy-L-galacturonic acid (GalNAcA), and 2,4-diacetamido-2,4,6-trideoxy-D-glucose (BacNAc2). The following structure has been assigned to the repeating-unit: leads to 3)Rhap(beta 1 leads to 6)GlcpNAc(alpha 1 leads to 4)GalpNAcA(alpha 1 leads to 3)BacpNAc2(alpha 1 leads to. The parent lipopolysaccharide is a mixture of S, R, and SR species, and its high phosphorus content is partly due to the presence of triphosphate residues, as found for other lipopolysaccharides from P. aeruginosa. In addition to phosphorus, heptose, a 3-deoxyoctulosonic acid, and amide-bound alanine, the core oligosaccharide contains glucose, rhamnose, and galactosamine (molar proportions 3:1:1). The rhamnose and part of the glucose are present as unsubstituted pyranoside residues: other glucose residues are 6-substituted.  相似文献   

10.
Flexibacter maritimus, a Gram-negative bacterium, is a fish pathogen responsible for disease in finfish species and a cause of cutaneous erosion disease in sea-caged salmonids. For the development of serology based diagnostics, protective vaccines, and a study of pathogenesis, the structural analysis of the lipopolysaccharide (LPS) produced by the bacterium has been undertaken. We now report that an acidic O-specific polysaccharide, obtained by mild acid degradation of the F. maritimus LPS was found to be composed of a disaccharide repeating unit built of 2-acetamido-3-O-acetyl-4-[(S)-2-hydroxyglutar-5-ylamido]-2,4,6-trideoxy-beta-glucose and 5-acetamido-7-[(S)-3-hydroxybutyramido]-8-amino-3,5,7,8,9-pentadeoxynonulopyranosonic acid (Sug) having the structure: The configuration of the C-2-C-7 fragment of the latter monosaccharide (B) was assigned beta-manno; however, the configuration at C-8 could not be established. NMR data indicate that the two monosaccharides have opposite absolute configurations. The repeating unit includes a linkage via a (S)-2-hydroxyglutaric acid residue, reported here for the first time as a component of a bacterial polysaccharide. The LPS was also found to contain a minor amount of a disaccharide beta-Sug-(2-3)-l-Rha, isolated from the products of the acidic methanolysis of the LPS.  相似文献   

11.
The lipopolysaccharide (LPS) from a new Enterobacteriaceae species, Rahnella aquatilis 2-95, was isolated and investigated. The structural components of the LPS molecule, namely, lipid A, core oligosaccharide, and O-specific polysaccharide, were obtained by mild acid hydrolysis. In lipid A, 3-oxytetradecanoic and tetradecanoic acids were found to be the predominant fatty acids. The major monosaccharides of the core oligosaccharide were galactose, arabinose, fucose, rhamnose, and an unidentified component. The O-specific polysaccharide was found to be assembled of a repeated trisaccharide unit of the following structure: [structure: see text]. The R. aquatilis 2-95 LPS is less toxic and more pyrogenic as compared to the one from the R. aquatilis 1-95 strain studied earlier. Both acyl and phosphate groups are essential for toxic and pyrogenic activity of R. aquatilis 2-95 LPS.  相似文献   

12.
The lipopolysaccharide from the freshwater bacterium Rahnella aquatilis 1-95 has been isolated and investigated for the first time. The structural components of the lipopolysaccharide molecule: lipid A, core oligosaccharide, and O-specific polysaccharide were isolated by mild acidic hydrolysis. In lipid A, 3-hydroxytetradecanoic and tetradecanoic acids were found to be the predominant fatty acids. In the core oligosaccharide, galactose, arabinose, fucose, and an unidentified component were shown to be the major monosaccharides. The O-specific polysaccharide consists of a regularly repeating trisaccharide unit with the acyl and phosphate following structure: [structure: see text] groups have been shown to be responsible for the toxic and pyrogenic properties of the lipopolysaccharide of R. aquatilis.  相似文献   

13.
O-specific polysaccharide has been isolated on mild hydrolysis of lipopolysaccharide from Yersinia aldovae and shown to consist of 2-acetamido-2-deoxy-D-glucose, D-glucose, 2-acetamido-2-deoxy-D-galactose, and 3,6-dideoxy-3- [(R)-3-hydroxybutyramido]-D-galactose in molar ratio 2:2:1:1. Acid hydrolysis, methylation, solvolysis with anhydrous hydrogen fluoride, 1H and 13C NMR studies indicated the polysaccharide to be composed of hexasaccharide repeating units of the following structure: [formula see text].  相似文献   

14.
The lipopolysaccharide from the freshwater bacterium Rahnella aquatilis 1-95 has been isolated and investigated for the first time. The structural components of the lipopolysaccharide molecule, such as lipid A, core oligosaccharide, and O-specific polysaccharide, were isolated by mild acidic hydrolysis. In lipid A, 3-hydroxytetradecanoic and tetradecanoic acids were found to be the predominant fatty acids. In the core, oligosaccharide, galactose, arabinose, fucose, and an unidentified component were shown to be the major monosaccharides. The O-specific polysaccharide consists of a regularly repeating trisaccharide unit with the following structure: . Both acyl and phosphate groups have been shown to be responsible for the toxic and pyrogenic properties of the lipopolysaccharide of R. aquatilis.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 466–474.Original Russian Text Copyright © 2005 by Varbanets, E. Zdorovenko, Ostapchuk, G. Zdorovenko.  相似文献   

15.
The lipopolysaccharide (LPS) from a new Enterobacteriaceae species, Rahnella aquatilis 2-95, was isolated and investigated. The structural components of the LPS molecule, namely, lipid A, core oligosaccharide, and O-specific polysaccharide, were obtained by mild acid hydrolysis. In lipid A, 3-oxytetradecanoic and tetradecanoic acids were found to be the predominant fatty acids. The major monosaccharides of the core oligosaccharide were galactose, arabinose, fucose, rhamnose, and an unidentified component. The O-specific polysaccharide was found to be assembled of a repeated trisaccharide unit of the following structure: The R. aquatilis 2-95 LPS is less toxic and more pyrogenic than the LPS from the R. aquatilis 1-95 strain studied earlier. Both acyl and phosphate groups are essential for toxic and pyrogenic activity of R. aquatilis 2-95 LPS.  相似文献   

16.
S Das  M Ramm  H Kochanowski    S Basu 《Journal of bacteriology》1994,176(21):6550-6557
The lipopolysaccharide (LPS) was isolated from Pseudomonas syringae pv. coriandricola W-43 by hot phenol-water extraction. Rhamnose and 3-N-acetyl-3-deoxyfucose were found to be the major sugar constituents of the LPS together with N-acetylglucosamine, N-acetylgalactosamine, heptose, and 3-deoxy-D-manno-octulosonic acid (Kdo). The main fatty acids of lipid A of the LPS were 3-OH-C:10, C12:0, 2-OH-C12:0, and 3-OH-C12:0. The O-specific polysaccharide liberated from the LPS by mild-acid hydrolysis was purified by gel permeation chromatography. The compositional analysis of the O-specific polysaccharide revealed the presence of L-rhamnose and 3-N-acetyl-3-deoxy-D-fucose in a molar ratio of 4:1. The primary structure of the O-specific polysaccharide was established by methylation analysis together with 1H and 13C nuclear magnetic resonance spectroscopy, including two-dimensional shift-correlated and one-dimensional nuclear Overhauser effect spectroscopy. The polysaccharide moiety was found to consist of a tetrasaccharide rhamnan backbone, and 3-N-acetyl-3-deoxy-D-fucose constitutes the side chain of the branched pentasaccharide repeating unit of the polysaccharide.  相似文献   

17.
O-Specific polysaccharide was obtained by mild acid degradation of Proteus penneri strain 16 lipopolysaccharide and found to contain D-glucose, D-glucuronic acid, 2-acetamido-2-deoxy-D-glucose, and 3,6-dideoxy-3-[(R)-3-hydroxybutyramido]- D-galactose in the ratio of 2:1:1:1 as well as a small proportion of O-acetyl groups. On the basis of one-dimensional 1H-NMR13C-NMR and NOE spectroscopy, two-dimensional homonuclear-shift-correlated spectroscopy with one-step and two-step relayed coherence transfer and heteronuclear 1H/13C NMR shift-correlated spectroscopy, it was concluded that the O-specific polysaccharide of P. penneri strain 16 has the following structure: (formula; see text) This structure was confirmed by methylation analysis and structural analysis of a linear tetrasaccharide fragment prepared by cleavage of the polysaccharide with anhydrous hydrogen fluoride followed by conversion of the alpha-tetrosyl fluoride obtained in to the corresponding free oligosaccharide and alditol. O-Acetyl groups were tentatively located at position 3 of the glucuronic acid residue and at position 4 of the 6-substituted glucose residue, the degree of acetylation being less than 20% of the total. Cross-reactions of P. penneri strain 16 anti-(O-specific polysaccharide) antiserum with lipopolysaccharides from several other Proteus strains and the role of 3,6-dideoxy-3-(R)-3-hydroxybutyramido-D-galactose in the serological specificity of P. penneri strain 16 are discussed.  相似文献   

18.
The O-specific polysaccharide of P. fluorescens IMV 2366 was studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D gsCOSY, TOCSY, gsNOESY, H-detected 1H,(13)C gsHSQC, HMQC-TOCSY, and gsHMBC experiments. The polysaccharide contains L-rhamnose, 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc) and 3-acylamido-3,6-dideoxy-D-glucose (D-Qui3NAcyl, where Acyl is 3-hydroxy-2,3-dimethyl-5-oxoprolyl). The structure 1 of the polysaccharide was found to be similar to the structure 2 of a 6-deoxy-L-talose (L-6dTal)-containing O-specific polysaccharide of a non-classified P. fluorescens strain, 361, studied earlier [Khomenko, V. A.; Naberezhnykh, G. A.; Isakov, V. V.; Solov'eva, T. F.; Ovodov, Y. S.; Knirel, Y. A.; Vinogradov, E. V. Bioorg. Khim. 1986, 12, 1641-1648; Naberezhnykh, G. A.; Khomenko, V. A.; Isakov, V. V., El'kin, Y. N.; Solov'eva, T. F.; Ovodov, Y. S. Bioorg. Khim. 1987, 13, 1428-1429]. --> 2)-beta-D-Quip3NAcyl-(1 --> 3)-alpha-L-Rhap-(1 --> 3)-alpha-D-FucpNAc-(1 --> 1. --> 4)-beta-D-Quip3NAcyl-(1 --> 3)-alpha-L-6dTalp4Ac-(1 --> 3)-alpha-D-FucpNAc-(1 -->2.  相似文献   

19.
An O-specific polysaccharide was obtained by mild acid degradation of P. mirabilis O29 lipopolysaccharide (LPS) and found to contain 2-acetamido-2-deoxy-D-galactose and D-glucuronic acid (D-GlcA) in the ratio 3:1. Studies of the polysaccharide by 1H- and 13C-NMR spectroscopy including two-dimensional correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), nuclear Overhauser effect spectroscopy (NOESY), and H-detected 1H,13C-heteronuclear multiple-quantum coherence (HMQC) experiments demonstrated the following structure of the branched tetrasaccharide repeating unit:  相似文献   

20.
The specific polysaccharide was obtained from the lipopolysaccharide of Shigella newcastle by mild acid hydrolysis and further purified by permeation chromatography on Sephadex G-50. It was found to consist of L-rhamnose, 2-acetamido-2-deoxy-D-galactose, D-galacturonic acid residues and O-acetyl groups in the molar ratios of 2:1:1:1. On the basis of 1H and 13C nuclear magnetic resonance spectroscopy, methylation analysis, partial acid hydrolysis, Smith degradation, and chromium trioxide oxidation, the following structure can be assigned to the repeating oligosaccharide unit of the polysaccharide:-4)DGalA(beta 1-3)DGalNAc-(beta 1-2)LAc3Rha(alpha 1-2)LRha(alpha 1-, where GalA = galacturonic acid. GalNAc = N-acetylgalactosamine, Ac3Rha = 3-O-acetylrhamnose. The structural and immunochemical data presented prove that Sh. newcastle lipopolysaccharide belongs to a 'non-classical' type of somatic antigens with acidic O-specific polysaccharide chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号