首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro cultivation of primed T cells with antigen resulted in the induction of a regulatory T cell that nonspecifically augmented the in vitro antibody responses of H-2-compatible T and B cells. This T cell, designated as the augmenting T cell (Ta), was unable to help B cells by itself but enhanced the antibody response of B cells to several multitudes only when conventional helper T (Th) cells or cloned Th cells from the same H-2 haplotype coexisted. Ta was radioresistant and belonged to Lyt-1+, 2-, L3T4+, I-J- T cell lineage. Ta exhibited interesting H-2-restricted activities: when primed T cells from (A X B) F1 were cultured with the antigen in the presence of parent A type antigen-presenting cells, the induced Ta was able to augment the antibody response of (A x B) F1 B cells in the presence of Th cells from F1----A but not from F1----B radiation bone marrow chimeras. This indicates that the induction of Ta in an F1 T cell population is dependent on the H-2 haplotype of antigen-presenting cells during in vitro cultivation. The restriction specificity of the established Ta is, however, not directed to the class II antigen itself but to the restriction specificity of Th cells that recognize class II antigen. In support of this is the fact that the elimination of A-restricted Th cells during cultivation by treatment with anti-I-J mAb, which is known to react with H-2-restricted Th cells, resulted in failure of induction of Ta cells having the augmenting activity for the A-restricted response.  相似文献   

2.
Helper (CD4+) T lymphocytes recognize protein Ag as peptides associated to MHC class II molecules. The polymorphism of class II alpha- and beta-chains has a major influence on the nature of the peptides presented to CD4+ T lymphocytes. For instance, T cell responses in H-2k and H-2b mice are directed at different epitopes of the hen egg lysozyme (HEL) molecule. The current studies were undertaken with the aim of defining the role of mixed haplotype I-A (alpha k beta b and alpha b beta k) molecules in T cell responses to HEL in (H-2k x H-2b)F1 mice, as well as the nature of the immunogenic peptides of HEL recognized in the context of I-A alpha k beta b and I-A alpha b beta k. A series of HEL-reactive T cell lines and hybridomas derived from MHC class II heterozygous (C57BL/6 x C3H F1) mice were established. Their responsiveness to HEL and synthetic HEL peptides was analyzed with the use of L cells transfected with either I-A alpha k beta b or I-A alpha b beta k as APC. Out of 28 clonal T cell hybridomas tested, 13 (46%) only responded to HEL presented by I-A alpha k beta b, 11 (40%) by I-A alpha b beta k (and to a minor extent I-A alpha k beta k), only 4 (14%) were primarily restricted by I-Ak, and none by I-Ab. All the I-A alpha k beta b-restricted T cell hybridomas responded to the HEL peptide 46-61 and to its shorter fragment 52-61, even at concentrations as low as 0.3 nM. As this determinant has been previously defined as immunodominant for I-Ak but not for I-Ab mice, these results suggest a role for the I-A alpha k chain in the selection and immunodominance of HEL 52-61 in H-2k mice. The fine specificity of I-A alpha k beta b-restricted T cell hybridomas for a series of different HEL peptides around the sequence 52 to 61 suggests that peptide 52-61 binds to I-A alpha k beta b with higher affinity than to I-A alpha k beta k. The peptides recognized in the context of I-A alpha b beta k and I-A alpha k beta k were not identified.  相似文献   

3.
By using a series of overlapping synthetic peptides that cover more than 95% of the amino acid sequence of nucleoprotein (NP) of influenza A/NT/60/68 virus, five Th cell epitopes in B10.S (H-2s), BALB/c (H-2d), CBA (H-2k), and B6 (H-2b) mice have been identified. The specificity of Th cell recognition of epitopes is largely dependent on the H-2 haplotype of the responding mouse strain. However, two out of the five Th epitopes defined could be recognized by mice of more than one haplotype, implying that the primary sequence of protein antigens could also influence the selection of dominant T cell epitopes by the immune system. Immunization of B10.S mice with peptide 260-283 generated strong Th cell response against type A influenza viruses. In the other three strains of mice tested, priming with helper peptides induced a stronger antipeptide than antiviral T cell response. However, the low responsiveness to virus in these mice could be partially overcome by immunization with a mixture of several helper peptides. The Th epitopes are defined by the ability of the peptides to stimulate class II MHC restricted CD4+ T cells to proliferate and to produce IL-2 in vitro. When compared with the known epitopes on NP recognised by class I restricted CD8+ cytotoxic T cells, it appears that Th and cytotoxic T cell epitopes are nonoverlapping. The AMPHI and Motifs methods were employed to analyze the sequence of NP and predict the potential dominant sites in the molecule. The predictions are compared with the experimental data obtained and the implications discussed.  相似文献   

4.
The use of T cell epitope-containing peptides for the induction of anergy in allergen sensitization is limited by genetic restriction that could be circumvented by using universally immunogenic epitopes. We attempted to identify such epitopes on Dermatophagoides pteronyssinus group 2 allergen (Der p 2), a major allergen of D. pteronyssinus T cells from BALB/c (H-2(d)), C57BL/6 (H-2(b)), C3H (H-2(k)), and SJL (H-2(s)) mice that were immunized with rDer p 2, recognized an immunodominant region encompassing residues 21-35. A synthetic 21-35 peptide (p21-35) induced strong dose-dependent in vitro T cell proliferation with cells of the four mouse strains and required processing for MHC class II presentation. Substitution of Ile(28) with Ala resulted in reduction of T cell proliferation in each strain. Ile(28) could represent an important MHC class II anchoring residue for T cell response to p21-35. An immunodominant T cell epitope of Der p 2 therefore behaves as a universal epitope and could be a suitable candidate for T cell anergy induction.  相似文献   

5.
Immunization with myelin basic protein (BP) causes experimental allergic encephalomyelitis (EAE) in certain strains of mice. SJL/J (H-2s) is the prototype sensitive strain. Although BALB/c (H-2d) is resistant to EAE through use of an identical immunization protocol, (BALB/c x SJL/J)F1 hybrid mice develop EAE after immunization with BP. T cell clones specific for BP have been isolated from a highly encephalitogenic line of (BALB/c x SJL/J)F1 hybrid T cells raised against bovine BP. The clones were examined for their H-2 restriction and specificity for heterologous forms of BP (mouse, rat, and bovine BP). The results revealed the clones cross-reacting with mouse (self) BP were almost always restricted to F1 hybrid class II major histocompatibility complex (MHC) elements. In contrast, mouse cross-reactive clones derived from a nonencephalitogenic (BALB/c x SJL/J) T cell line raised against rat BP were largely restricted to H-2d elements. These clones did not cross-react with bovine BP. Four additional lines were generated by carrying the original rat and bovine F1 T cell lines on parental antigen-presenting cells thus generating lines biased toward homozygous (SJL/J, H-2s, or BALB/c, H-2d) restriction elements. These "parentally restricted" T cell lines did not induce EAE when injected in vivo. These results suggest that in this F1 strain sensitivity to T cell-induced EAE is associated with epitopes on murine BP that associate with F1 class II MHC restricting elements. In contrast, nonencephalitogenic T cell lines contain a high proportion of murine cross-reactive clones restricted to H-2d, the haplotype of the classically resistant BALB/c mouse. This work illustrates the use of T cell lines and clones in a model system to further analyze the role of MHC restriction elements in autoimmune disease occurring in heterozygous individuals.  相似文献   

6.
Peptides bind to MHC class II molecules with a defined periodicity such that the peptide-flanking residues (PFRs) P-1 and P11, which lie outside the core binding sequence (P1-P9), are solvent exposed and accessible to the TCR. Using a novel MHC class II:peptide binding assay, we defined the binding register for nine immunogenic epitopes to formally identify the flanking residues. Seven of the nine epitopes, restricted by H-2A(k), H-2A(g7), or H-2E(k), were found to generate T cells that were completely dependent on either P-1 or P11, with dependency on P-1 favored over P11. Such PFR dependency appears to be influenced by the type of amino acid exposed, in that residues that can form salt bridges or hydrogen bonds are favored over small or hydrophobic residues. Peptides containing alanine substitutions at P-1 or P11 in place of PFRs that mediate dependency were considerably less immunogenic and mediated a substantially reduced in vitro recall response to the native protein, inferring that PFR recognition increases immunogenicity. Our data suggest that PFR recognition is a common event characteristic of all MHC class II-restricted T cell responses. This key feature, which is not shared by MHC class I-restricted responses, may underlie the broad functional diversity displayed by MHC class II-restricted T cells.  相似文献   

7.
The role of class II restriction in T cell recognition of an epitope of the autoantigen myelin basic protein (MBP) has been investigated. Encephalitogenic PL/J(H-2u) and (PL/J X SJL/J(H-2s))F1 ((PLSJ)F1) clones, isolated after immunization with intact MBP, recognize the N-terminal 11 amino acid residues of MBP in association with I-Au class II molecules. The synthetic peptide MBP 1-11 has been tested in vivo for induction of EAE. Clinical and histological EAE occurs in PL/J and (PLSJ)F1 mice but not SJL/J. The class II restriction of T cells primed with MBP 1-11 has been examined in primary cultures in vitro. Similar to encephalitogenic T cell clones, isolated after continuous selection in vitro, the population of MBP 1-11-specific proliferative PL/J and (PLSJ)F1 T cells, recognize this epitope in association with I-Au class II molecules. Not all MBP-specific T cell clones which are restricted to I-Au class II molecules cause autoimmune encephalomyelitis. The specificity of these non-encephalitogenic clones has been examined in this report. These clones also recognize MBP 1-11. Thus recognition of an encephalitogenic T cell epitope is not sufficient for induction of EAE.  相似文献   

8.
Hen egg-white lysozyme (HEL)-specific Thy-1+, Lyt-1+2- T cell lines and clones were derived from the nonresponder C57BL/6 strain. Although the antigen-specific proliferative response of these T cells in the presence of syngeneic irradiated spleen cells as a source of antigen-presenting cells (APC) was normal, the same cells were incapable of stimulating B cells to secrete antibody in vitro. This deficiency could, however, be corrected by the addition of an excess of normal T cells or a supernatant from concanavalin A-stimulated rat spleen cells. Alternatively, the use of highly cross-reactive ring-necked pheasant lysozyme in the cultures allowed expression of efficient help, ruling out any inherent deficiency in the T cells. The antibody response was specific and required MHC compatibility between the T lines and responding B cells. By using (H-2b X H-2d)F1 B cells and another H-2d-restricted HEL-specific T line, it was shown that only the H-2b-restricted T-B collaboration required exogenous factors, and the H-2d-restricted collaboration did not. Because both proliferative and helper responses are dependent upon MHC-restricted antigen presentation by macrophage-APC and B cells, respectively, these results suggest that the defect in the nonresponder H-2b-restricted T-B collaborative pathway may relate to the inability of B cells to adequately process and present HEL to clonal T cells.  相似文献   

9.
The epitopes recognized by pathogenic T cells in systemic autoimmune disease remain poorly defined. Certain MHC class II-bound self peptides from autoimmune MRL/lpr mice are not found in eluates from class II molecules of MHC-identical C3H mice. Eleven of 16 such peptides elicited lymph node cell and spleen cell T cell proliferation in both MRL/lpr (stimulation index = 2.03-5.01) and C3H mice (stimulation index = 2.03-3.75). IL-2 and IFN-gamma production were detected, but not IL-4. In contrast to what was seen after immunization, four self peptides induced spleen cell proliferation of T cells from naive MRL/lpr, but not from C3H and C57BL/6.H2(k), mice. These peptides were derived from RNA splicing factor SRp20, histone H2A, beta(2)-microglobulin, and MHC class II I-A(k)beta. The first three peptides were isolated from I-E(k) molecules and the last peptide was bound to I-A(k). T cell responses, evident as early as 1 mo of age, depended on MHC class II binding motifs and were inhibited by anti-MHC class II Abs. Thus, although immunization can evoke peripheral self-reactive T cells in normal mice, the presence in MRL/lpr mice of spontaneous T cells reactive to certain MHC-bound self peptides suggests that these T cells actively participate in systemic autoimmunity. Peptides eluted from self MHC class II molecules may yield important clues to T cell epitopes in systemic autoimmunity.  相似文献   

10.
The lymphocytic choriomeningitis virus (LCMV)-specific Tc response in (C3 X D2) F1 hybrids (k X d) is markedly biased in favor of the H-2d haplotype. Adoptive transfer experiments established that this haplotype preference also applied to T cell function in vivo. Using different mouse strain combinations we were unable to detect an influence of sex, non-H-2 background, maternal genotype, or route of priming on the preference pattern. In other haplotype combinations tested (k and b, b and d) no distinct haplotype preference was observed. A comparison of the LCMV-specific Tc response of (C X C3) F1 and (C-H-2dm2 X C3) F1 hybrids revealed that the dominance of the H-2d haplotype was controlled by H-2Ld. The ability of this gene to down-regulate the generation of an H-2k-restricted response did not seem to reflect antigenic mimicry since H-2k-restricted LCMV-specific Tc did not lyse H-2d expressing targets. In regard to the in vivo significance of haplotype preference it was found that (C X C3) F1 mice expressed an earlier and stronger virus-specific delayed type hypersensitivity response and exerted a more efficient virus control than did (C-H-2dm2 X C3) F1. Taken together these findings suggest that haplotype preference reflects a selection process favoring the restriction element associated with the most efficient immune response in vivo. The implications of this are discussed.  相似文献   

11.
Staphylococcal enterotoxins (SE) are known to be potent T cell activators, stimulating +/- proliferation and lymphokine production. These toxins have recently have been termed "superantigens" because of their ability to bind directly to class II molecules forming a ligand that interacts with particular V beta gene elements within the TCR complex. This interaction between SE and MHC class II molecules plays a central role in toxin-induced mitogenesis. In the present study we have examined the effect of polymorphism on the ability of MHC class II molecules to bind and present SE. Through the use of H-2 congenic mouse strains, it was possible to look directly at haplotype differences within the MHC and their effect on SE presentation to a panel of responsive V beta-bearing T cells. The results demonstrate that toxin presentation by class II-bearing accessory cells to murine T cells is greatly affected by polymorphisms within the H-2 complex. Toxin-pulsed accessory cells obtained from mice of an H-2k and H-2u haplotype were found to be less efficient in activating a variety of T cell clones and hybridomas. However, one T cell clone responded similarly to the enterotoxins presented on all H-2 haplotypes, suggesting that differences in responses of T cells are not simply a function of the degree of binding of these toxins to various class II molecules. Neutralization analysis with monoclonal anti-class II antibodies demonstrates that both I-A and I-E molecules play a significant role in SEA and SEB presentation to murine T cells. These results suggest that the differential activation of T cells by a particular enterotoxin may reflect a difference in recognition of an SE:class II ligand by a surface T cell receptor complex.  相似文献   

12.
Using plasmid vaccination with DNA encoding the putative phosphate transport receptor PstS-3 from Mycobacterium tuberculosis and 36 overlapping 20-mer peptides spanning the entire PstS-3 sequence, we determined the immunodominant Th1-type CD4(+) T cell epitopes in C57BL/10 mice, as measured by spleen cell IL-2 and IFN-gamma production. Furthermore, a potent IFN-gamma-inducing, D(b)-restricted CD8(+) epitope was identified using MHC class I mutant B6.C-H-2(bm13) mice and intracellular IFN-gamma and whole blood CD8(+) T cell tetramer staining. Using adoptive transfer of CFSE-labeled, peptide-pulsed syngeneic spleen cells from naive animals into DNA vaccinated or M. tuberculosis-infected recipients, we demonstrated a functional in vivo CTL activity against this D(b)-restricted PstS-3 epitope. IFN-gamma ELISPOT responses to this epitope were also detected in tuberculosis-infected mice. The CD4(+) and CD8(+) T cell epitopes defined for PstS-3 were completely specific and not recognized in mice vaccinated with either PstS-1 or PstS-2 DNA. The H-2 haplotype exerted a strong influence on immune reactivity to the PstS-3 Ag, and mice of the H-2(b, p, and f) haplotype produced significant Ab and Th1-type cytokine levels, whereas mice of H-2(d, k, r, s, and q) haplotype were completely unreactive. Low responsiveness against PstS-3 in MHC class II mutant B6.C-H-2(bm12) mice could be overcome by DNA vaccination. IFN-gamma-producing CD8(+) T cells could also be detected against the D(b)-restricted epitope in H-2(p) haplotype mice. These results highlight the potential of DNA vaccination for the induction and characterization of CD4(+) and particularly CD8(+) T cell responses against mycobacterial Ags.  相似文献   

13.
T cell specificity to individual antigenic epitopes could determine the distinction between protective and pathogenic host reactions in tuberculous infections. Therefore, T cell stimulatory epitopes of the Mycobacterium tuberculosis 38-kDa lipoprotein, of known structure and specificity and of prominent immunogenicity, have been examined. To identify potential T cell epitopes, eight peptides, seven of which were predicted to form amphiphatic helices, were used for immunization of various inbred mice and for elicitation of in vitro T cell proliferative responses. Three different response patterns were observed. 1) Lymph node cells from mice immunized with peptide, recombinant 38-kDa Ag, killed M. tuberculosis strain H37Ra, or live Mycobacterium bovis bacillus Calmette Guerin infection responded to peptide 38.G (residues 350 to 369). Responses were observed in mice of H-2b, H-2d, and H-2k haplotypes. 2) Peptide 38.C (residues 201 to 220) induced proliferation of lymph node cells from 38-kDa protein-, but not from peptide-immunized mice. 3) Peptide 38.F (residues 285 to 304) only elicited a response of the homologous peptide-primed cells. Analysis of CD4+ T cell lines confirmed the distinct specificities and stimulatory features of peptides 38.F and 38.G. The described attributes of peptide 38.C and 38.G could be of potential interest for diagnostic evaluation in tuberculous infections.  相似文献   

14.
The i.v. injection of parental T cells into F1 hybrid mice can result in a graft-vs-host (GVH)-induced immune deficiency that is Ag nonspecific and of long duration. The effect of the GVH reaction (GVHR) on the host's immune system depends on the class of F1 MHC Ag recognized by the donor cells. To determine the role of different subsets of donor-derived T cells in the induction of GVHR, donor spleen cells were negatively selected by anti-T cell mAb and C, and the cells were injected into F1 mice that differed from the donor by both class I and II MHC Ag or by class I or class II MHC only. The induction of GVHR across class I + II differences was found to require both L3T4+ and Lyt-2+ parental cells. Induction of GVHR across a class II difference required only L3T4+ parental T cells in the combination tested [B6-into-(B6 x bm12)F1]. In contrast, B6 Lyt-2+ cells were sufficient to induce GVHR across a class I difference in (B6 x bm1)F1 recipients. In addition, a direct correlation was observed between the cell types required for GVH induction and the parental T cell phenotypes detected in the spleens of the GVH mice. The number of parental cells detected in the unirradiated F1 hosts was dependent upon the H-2 differences involved in the GVHR. Induction of a class I + class II GVHR resulted in abrogation of both TNP-self and allogeneic CTL responses. In contrast, induction of a class II GVHR resulted in only a selective loss of TNP-self but not of allogeneic CTL function. Unexpectedly, the induction of a class I GVHR also resulted in the selective loss of the TNP-self CTL response. Thus, these class I and class II examples of GVH both result in the selective abrogation of L3T4+ Th cell function. The data are discussed in terms of respective roles of killer cells and/or suppressor cells in the induction of host immune deficiency by a GVHR, and of the selective deficiency in host Th cell function induced by different classes of GVHR.  相似文献   

15.
By using the intra-I region recombinant mouse strain B10.ASR7 (H-2as3), the immune response (Ir) genes for LDH-B and MOPC-173 were genetically and serologically separated, as assayed by T cell proliferation. Previous work demonstrated that H-2s and H-2b strains respond to LDH-B and MOPC-173 whereas H-2a and H-2k strains failed to respond due to haplotype-specific suppression of I-Ak molecule-activated T helper cells by I-Ek molecule-activated T suppressor cells. In the experiments reported here, B10.ASR7 mice, which lack I-Ek expression, mounted a significant T cell proliferative response to LDH-B but not to MOPC-173. Separation of the Ia determinants used in restricting these two antigen responses was further confirmed when pretreatment of B10.S(9R) (A beta sA alpha sE beta sE alpha k) macrophages with A.TL anti-B10.HTT serum (anti-As beta Es beta Js) adsorbed with B10.ASR7 spleen cells blocked the MOPC-173 response but not the LDH-B response. Unadsorbed serum blocked both antigen responses. The B10.ASR7 E beta allele was determined to be s due to the ability of (A.TL X B10.ASR7)F1 hybrids to mount a T cell proliferative response to the terpolymer GLPhe. Monoclonal antibody blocking of the B10.ASR7 T cell proliferative response to LDH-B demonstrated that the Ia.2 and Ia.17, and not the Ia.15 epitopes are spatially related to the Ia epitopes involved in the restriction of the B10.ASR7 LDH-B T cell proliferative response. In addition, B10.ASR7 helper T cells generated in response to LDH-B were suppressed in a haplotype-specific manner by I-Ek molecule-restricted suppressor T cells in that (A.TL X B10.ASR7)F1 hybrids failed to respond to LDH-B. This nonresponsiveness was eliminated by treatment with monoclonal antibodies directed against the I-Ek molecule. These results suggest the possibility that the immune response defect in B10.ASR7 could be related to the site of recombination.  相似文献   

16.
Cloned human CD4+ T cell lines specific for the house dust mite Dermatophagoides pteronyssinus were used to map minimal T cell activation-inducing epitopes on the Group I allergen in D. pteronyssinus extracts (Der p I) molecule. Most of these Der p I-specific T cell clones expressed different TCR V alpha and V beta gene products. Using recombinant deletion proteins, three T cell epitopes were identified on the Der p I molecule; p45-67 and p117-143 were recognized by HLA-DR7-restricted T cells, whereas p94-104 was recognized in the context of HLA-DR2, DRw11 (DR5), and -DR8 molecules. This degenerate class II MHC restriction appears to be due to shared Phe and Asp residues at positions 67 and 70, respectively, in the third variable domain of the HLA-DR beta chain. All three T cell epitopes induced Th2-like cytokine production profiles by the Der p I-specific T cell clones, which were characterized by the production of very high levels of IL-4 and IL-5, as compared with those secreted by tetanus toxin-specific T cell clones derived from the same patients, but no or low amounts of IL-2 and IFN-gamma. This Th2-like production profile was, however, not an intrinsic property of the Der p I-specific T cells, but was dependent upon their mode of activation. Stimulation with Con A also induced very low or no measurable levels of IL-2 and IFN-gamma, whereas activation with TPA and the calcium ionophore A23187 resulted in the production of high levels of IL-4, IL-5, IL-2, and IFN-gamma. These results indicate that Der p I-specific T cell clones are not defective in their capacity to produce high levels of Th1 cytokines.  相似文献   

17.
Theiler's murine encephalomyelitis virus induces chronic demyelinating disease in genetically susceptible mice. The histopathological and immunological manifestation of the disease closely resembles human multiple sclerosis, and, thus, this system serves as a relevant infectious model for multiple sclerosis. The pathogenesis of demyelination appears to be mediated by the inflammatory Th1 response to viral epitopes. In this study, T cell repertoire reactive to the major pathogenic VP1 epitope region (VP1233-250) was analyzed. Diverse minimal T cell epitopes were found within this region, and yet close to 50% of the VP1-reactive T cell hybridomas used V beta 16. The majority (8/11) of the V beta 16+ T cells required the C-terminal amino acid residue on the epitope, valine at position 245, and every T cell hybridoma recognizing this C-terminal residue expressed V beta 16. However, the complementarity-determining region 3 sequences of the V beta 16+ T cell hybridomas were markedly heterogeneous. In contrast, such a restriction was not found in the V alpha usage. Only restricted residues at this C-terminal position allowed for T cell activation, suggesting that V beta 16 may recognize this terminal residue. Further functional competition analysis for TCR and MHC class II-contacting residues indicate that many different residues can be involved in the class II and/or TCR binding depending on the T cell population, even if they recognize the identical minimal epitope region. Thus, recognition of the C-terminal residue of a minimal T cell epitope may associate with a particular V beta (but not V alpha) subfamily-specific sequence, resulting in a highly restricted V beta repertoire of the epitope-specific T cells.  相似文献   

18.
A single injection of anti-I-Ak antibody (AB) into H-2k mice resulted in abrogation of splenic antigen-presenting cell (APC) function for protein antigen-primed T cells or alloantigen-specific T cells. Spleen cells from anti-I-A-treated mice are not inhibitory in cell mixing experiments when using cloned antigen-specific T cells as indicator cells, thus excluding a role for suppressor cells in the observed defect. Also, nonspecific toxic effects and carry-over of blocking Ab were excluded as causes for the defect. Experiments with anti-I-Ak Ab in (H-2b X H-2k)F1 mice showed abrogation of APC function for T cells specific for both parental I-A haplotypes. In homozygous H-2k mice, anti-I-Ak treatment not only abrogated APC function for I-Ak-restricted cloned T cells but also for I-AekE alpha k-restricted cloned T cells. FACS analysis of spleen cells from anti-I-Ak-treated (H-2b X H-2k)F1 mice revealed the disappearance of all Ia antigens (both I-A and I-E determined), whereas the number of IgM-bearing cells was unaffected. The reappearance of APC function with time after injection was correlated with the reappearance of I-A and I-E antigen expression. In vitro incubation of spleen cells from anti-I-A-treated mice led to the reappearance of Ia antigen expression and APC function within 8 hr. Thus, it appears that B cells (as determined by FACS analysis) and APC (as determined by functional analysis) behave similarly in response to in vivo anti-I-A Ab treatment. We interpret these findings as suggesting that in vivo anti-I-A treatment temporarily reduces the expression of Ia molecules through co-modulation on all Ia-bearing spleen cells, thereby rendering them incompetent as APC. Such modulation of Ia molecules does not occur when spleen cells are incubated in vitro with anti-I-A antibodies. These results imply that a primary defect purely at the level of APC in anti-I-A-treated mice may be responsible for the observed T cell nonresponsiveness when such mice are subsequently primed with antigen.  相似文献   

19.
Intravenous injection of semiallogeneic (C57BL/6XDBA/2)F1 lymphocytes into adult C57BL/6 recipient mice not only, as previously reported, reduces the recipients' cytotoxic T lymphocyte response in a subsequent in vitro mixed lymphocyte reaction against the injected cell type, but also reduces Th cell function in the same MLR. Thus lymphoid cells derived from the injected mice were greatly reduced in their ability to proliferate and to produce IL-2 in response to (C57BL/6XDBA/2)F1 stimulator cells in vitro, whereas third party responses were unaffected. This appears to be due to a reduction in the precursor frequency of IL-2-producing T lymphocytes specific for the injected cells as measured by limiting dilution analysis. Similar donor-specific reduction in the frequency of precursors of IL-2-producing cells was seen after i.v. injection of A.TL lymphocytes into A.TH recipients (differing at class II determinants I-A and I-E, but identical at K and D). Here there also appeared to be a functional clonal deletion of precursors of IL-2-producing Th cells, shown directly to be class II MHC reactive and CD4+. There is strong evidence that the reduction of class I-specific cytotoxic responses in the injected mice is a manifestation of donor cells that function as veto cells, i.e., that function as deletional APC that inactivate class I-reactive CTL precursors that recognize them. Our data in this study show that class II-specific Th responses are similarly reduced in the injected mice and suggest that CD4+ class II-reactive precursors of Th cells may be functionally inactivated in vivo by donor cells via a veto-like mechanism.  相似文献   

20.
The goal of this study was to assess and compare the allorecognition requirements for eliciting Lyt-2+ helper and effector functions from primary T cell populations. By using interleukin 2 (IL 2) secretion as a measure of T helper (Th) function, and cytolytic T lymphocyte (CTL) generation as a measure of effector function, this study compared the responses of Lyt-2+ T cells from wild-type B6 mice against a series of H-2Kb mutant determinants. Although all Kbm determinants stimulated B6 Lyt-2+ T cells to become cytolytic effector cells, the various Kbm determinants differed dramatically in their ability to stimulate Lyt-2+ T cells to function as IL 2-secreting helper cells. For example, in contrast to Kbm1 determinants that stimulated both helper and effector functions, Kbm6 determinants only stimulated B6 Lyt-2+ T cells to become cytolytic and failed to stimulate them to secrete IL 2. The distinct functional responses of Lyt-2+ T cells to Kbm6 determinants was documented by precursor frequency determinations, and was not due to an inability of the Kbm6 molecule to stimulate Lyt-2+ Th cells to secrete IL 2. Rather, it was the specific recognition and response of Lyt-2+ T cells to novel mutant epitopes on the Kbm6 molecule that was defective, such that anti-Kbm6 Lyt-2+ T cells only functioned as CTL effectors and did not function as IL 2-secreting Th cells. The failure of Lyt-2+ anti-Kbm6 T cells to function as IL 2-secreting Th cells was a characteristic of all Lyt-2+ T cell populations examined in which the response to novel mutant epitopes could be distinguished from the response to other epitopes expressed on the Kbm6 molecule. The absence of significant numbers of anti-Kbm6 Th cells in Lyt-2+ T cell populations was examined for its functional consequences on anti-Kbm6 CTL responsiveness. It was found that primary anti-Kbm6 CTL responses could be readily generated in vitro, but unlike responses to most class I alloantigens that can be mediated by Lyt-2+ Th cells, anti-Kbm6 CTL responses were strictly dependent upon self-Ia-restricted L3T4+ Th cells. Because the restriction specificity of L3T4+ Th cells is determined by the thymus, in which their precursors had differentiated, anti-Kbm6 CTL responsiveness, unlike responsiveness to most class I alloantigens, was significantly influenced by the Ia phenotype of the thymus in which the responder cells had differentiated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号