首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi in Antarctica   总被引:1,自引:0,他引:1  
Fungi are generally easily dispersed and are able to colonize a very wide variety of different substrata and to withstand many different environmental conditions. Because of these characteristics they spread all over the world. The Antarctic mycoflora is quite diversified within the different climatic regions of the continent. Most Antarctic microfungi are cosmopolitan; some of them are propagules transported to Antarctica but unable to grow under the Antarctic conditions, while others, termed indigenous, are well adapted and able to grow and reproduce even at low temperatures, mostly as psychrotolerant, or fast sporulating forms, able to conclude their life-cycles in very short time. In the most extreme and isolated areas of the continent, such as the Antarctic Dry Valleys, endemic species showing physiological and morphological adaptations have locally evolved. Most Antarctic fungi, as well as fungi from other dry and cold habitats, are adapted to low temperatures, repeated freeze and thawing cycles, low water availability, osmotic stress, desiccation, low nutrients availability and high UV radiation. Sometimes single strategies are not specific for single stress factors and allow these microorganisms to cope with more than one unfavourable condition.  相似文献   

2.
《Fungal biology》2021,125(11):891-904
Light is an important signal for fungi in the environment and induces many genes with roles in stress and virulence responses. Conidia of the entomopathogenic fungi Aschersonia aleyrodis, Beauveria bassiana, Cordyceps fumosorosea, Lecanicillium aphanocladii, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, Tolypocladium cylindrosporum, and Tolypocladium inflatum were produced on potato dextrose agar (PDA) medium under continuous white light, on PDA medium in the dark, or under nutritional stress (= Czapek medium without sucrose = MM) in the dark. The conidial tolerance of these species produced under these different conditions were evaluated in relation to heat stress, oxidative stress (menadione), osmotic stress (KCl), UV radiation, and genotoxic stress caused by 4-nitroquinoline 1-oxide (4-NQO). Several fungal species demonstrated greater stress tolerance when conidia were produced under white light than in the dark; for instance white light induced higher tolerance of A. aleyrodis to KCl and 4-NQO; B. bassiana to KCl and 4-NQO; C. fumosorosea to UV radiation; M. anisopliae to heat and menadione; M. brunneum to menadione, KCl, UV radiation, and 4-NQO; M. robertsii to heat, menadione, KCl, and UV radiation; and T. cylindrosporum to menadione and KCl. However, conidia of L. aphanocladii, S. lanosoniveum, and T. inflatum produced under white light exhibited similar tolerance as conidia produced in the dark. When conidia were produced on MM, a much stronger stress tolerance was found for B. bassiana to menadione, KCl, UV radiation, and 4-NQO; C. fumosorosea to KCl and 4-NQO; Metarhizium species to heat, menadione, KCl, and UV radiation; T. cylindrosporum to menadione and UV radiation; and T. inflatum to heat and UV radiation. Again, conidia of L. aphanocladii and S. lanosoniveum produced on MM had similar tolerance to conidia produced on PDA medium in the dark. Therefore, white light is an important factor that induces higher stress tolerance in some insect-pathogenic fungi, but growth in nutritional stress always provides in conidia with stronger stress tolerance than conidia produced under white light.  相似文献   

3.
The induction of stress proteins in HeLa and CHO cells was investigated following a 2 h exposure to radiofrequency (RF) or microwave radiation. Cells were exposed or sham exposed in vitro under isothermal (37 ± 0.2 °C) conditions. HeLa cells were exposed to 27- or 2450 MHz continuous wave (CW) radiation at a specific absorption rate (SAR) of 25 W/kg. CHO cells were exposed to CW 27 MHz radiation at a SAR of 100 W/kg. Parallel positive control studies included 2 h exposure of HeLa or CHO cells to 40 °C or to 45 μM cadmium sulfate. Stress protein induction was assayed 24 h after treatment by electrophoresis of whole-cell extracted protein labeled with [35S]-methionine. Both cell types exhibited well-characterized responses to the positive control stresses. Under these exposure conditions, neither microwave nor RF radiation had a detectable effect on stress protein induction as determined by either comparison of RF-exposed cells with sham-exposed cells or comparison with heat-stressed or Cd++ positive control cells. Bioelectromagnetics 18:499–505, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
It has been hypothesized that radiation-induced oxidative stress is the mechanism for a wide range of negative impacts on biota living in radioactively contaminated areas around Chernobyl. The present study tests this hypothesis mechanistically, for the first time, by modelling the impacts of radiolysis products within the cell resulting from radiations (low linear energy transfer β and γ), and dose rates appropriate to current contamination types and densities in the Chernobyl exclusion zone and at Fukushima. At 417 μGy h(-1) (illustrative of the most contaminated areas at Chernobyl), generation of radiolysis products did not significantly impact cellular concentrations of reactive oxygen species, or cellular redox potential. This study does not support the hypothesis that direct oxidizing stress is a mechanism for damage to organisms exposed to chronic radiation at dose rates typical of contaminated environments.  相似文献   

5.
Iron deficiency is a stress frequently experienced by plants, owing to the low solubility of Fe(III) salts in neutral or alcaline soils. Iron is an essential plant nutrient as it is involved in fundamental metabolic processes. Furthermore, it is a constituent of important antioxidant enzymes, which are involved in maintaining the balance of cell redox state. UV-B radiation is an environmental problem which can alter the redox state of plants through the increased production of reactive oxygen species. In order to investigate if iron deficiency influences the antioxidant response of plants to UV-B radiation, barley seedlings, Hordeum vulgare L. cv. Express, were exposed to UV-B radiation while growing in nutrient solutions with or without iron. After eight days of growth, plants were harvested and analysed. Results show that, during the 8 days of the experimental period, in neither of the two nutritional conditions considered does UV-B exposure reduce shoot weight or induce evident alterations of thylakoid membranes in respect to controls. However, different responses to UV-B radiation between iron-deficient and iron-sufficient plants were observed at the level of parameters related to oxidative stress. In fact, in iron-sufficient plants the contents of photosynthetic pigments and ascorbate, and the enzyme activities of ascorbate peroxidase (EC 1.11.1.11) and catalase (EC 1.11.1.6) were not affected by UV-B radiation. Conversely, in iron-deficient plants the contents of ascorbate and zeaxanthin and the activity of ascorbate peroxidase increased under UV-B exposure, whereas catalase activity decreased. Furthermore, UV-B radiation induced an increase of hydrogen peroxide content which was higher in iron-deprived plants than in iron-sufficient ones. This may indicate that plants growing in an environment enriched in UV-B radiation may develop a high level of oxidative stress when iron supply is limited.  相似文献   

6.
Mobile phones, heat shock proteins and cancer   总被引:7,自引:0,他引:7  
There are several reports which indicate that electromagnetic radiation (such as from mobile phones) at non-thermal levels may elicit a biological effect in target cells or tissues. Whether or not these biological effects lead to adverse health effects, including cancer, is unclear. To date there is limited scientific evidence of health issues, and no mechanism by which mobile phone radiation could influence cancer development. In this paper, we develop a theoretical mechanism by which radiofrequency radiation from mobile phones could induce cancer, via the chronic activation of the heat shock response. Upregulation of heat shock proteins (Hsps) is a normal defence response to a cellular stress. However, chronic expression of Hsps is known to induce or promote oncogenesis, metastasis and/or resistance to anticancer drugs. We propose that repeated exposure to mobile phone radiation acts as a repetitive stress leading to continuous expression of Hsps in exposed cells and tissues, which in turn affects their normal regulation, and cancer results. This hypothesis provides the possibility of a direct association between mobile phone use and cancer, and thus provides an important focus for future experimentation.  相似文献   

7.
Many researchers have commented on the remarkable ability of African shifting cultivators to adjust their agricultural methods to available resources. In northern Zambia, where the shifting cultivators depend on woodlands as an agricultural fallow crop, deforestation is prevalent under the increasing population pressure. Adaptations to the less vigorous forest cover have taken various forms, but all of them can be described as succession to a common system of shifting cultivation. In many respects, these can be regarded as part of a process of agricultural adaptive radiation as the affected populations were pushed into new environments as a result of warfare and/or population pressure.  相似文献   

8.
Considerable debate has accompanied efforts to integrate the selective impacts of environmental stresses into models of life-history evolution. This study was designed to determine if different environmental stresses have consistent phenotypic effects on life-history characters and whether selection under different stresses leads to consistent evolutionary responses. We created lineages of a wild mustard (Sinapis arvensis) that were selected for three generations under five stress regimes (high boron, high salt, low light, low water, or low nutrients) or under near-optimal conditions (control). Full-sibling families from the six selection histories were divided among the same six experimental treatments. In that test generation, lifetime plant fecundity and six phenotypic traits were measured for each plant. Throughout this greenhouse study, plants were grown individually and stresses were applied from the early seedling stage through senescence. Although all stresses consistently reduced lifetime fecundity and most size- and growth-related traits, different stresses had contrasting effects on flowering time. On average, stress delayed flowering compared to favorable conditions, although plants experiencing low nutrient stress flowered earliest and those experiencing low light flowered latest. Contrary to expectations of Grime's triangle model of life-history evolution, this ruderal species does not respond phenotypically to poor environments by flowering earlier. Most stresses enhanced the evolutionary potential of the study population. Compared with near-optimal conditions, stresses tended to increase the opportunity for selection as well as phenotypic variance, although both of these quantities were reduced in some stresses. Rather than favoring traits characteristic of stress tolerance, such as slow growth and delayed reproduction, phenotypic selection favored stress-avoidance traits: earlier flowering in all five stress regimes and faster seedling height growth in three stresses. Phenotypic correlations reinforced direct selection on these traits under stress, leading to predicted phenotypic change under stress, but no significant selection in the control environment. As a result of these factors, selection under stress resulted in an evolutionary shift toward earlier flowering. Environmental stresses may drive populations of ruderal plant species like S. arvensis toward a stress-avoidance strategy, rather than toward stress tolerance. Further studies will be needed to determine when selection in stressful environments leads to these alternative life-history strategies.  相似文献   

9.
The aim of this study was to determine whether the exposure to either single or multiple radio‐frequency (RF) radiation frequencies could induce oxidative stress in cell cultures. Exposures of human MCF10A mammary epithelial cells to either a single frequency (837 MHz alone or 1950 MHz alone) or multiple frequencies (837 and 1950 MHz) were conducted at specific absorption rate (SAR) values of 4 W/kg for 2 h. During the exposure period, the temperature in the exposure chamber was maintained isothermally. Intracellular levels of reactive oxygen species (ROS), the antioxidant enzyme activity of superoxide dismutase (SOD), and the ratio of reduced/oxidized glutathione (GSH/GSSG) showed no statistically significant alterations as the result of either single or multiple RF radiation exposures. In contrast, ionizing radiation‐exposed cells, used as a positive control, showed evident changes in all measured biological endpoints. These results indicate that single or multiple RF radiation exposure did not elicit oxidative stress in MCF10A cells under our exposure conditions. Bioelectromagnetics 33:604–611, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
To test the effects of low levels of radiation from space on living organisms, we flew Xenopus laevis embryos at different stages of development on a stratospheric balloon (BI.R.BA mission). After recovery, different parameters were analyzed to assess the effects of flight, with particular regard to oxidative stress damage. Because of failed temperature control during flight, the flight shielded embryos (FC) could not be used for biochemical or morphological comparisons. In contrast, the incubation conditions (i.e. temperature, containers, volumes) for the flight embryos (F) were parallel to those for the ground controls. Mortality data show that younger embryos (16 h) flown on the balloon (F) are more sensitive to radiation exposure than older ones (40 h and 6 days). Exposure during flight lowered the antioxidant potential in all embryos, particularly older ones. These preliminary data demonstrate that flight on a stratospheric balloon might affect antioxidant metabolism, though it is not yet possible to correlate these results with low radiation exposure during flight.  相似文献   

11.
Effects of ultraviolet-B irradiation on plants during mild water stress.   总被引:7,自引:0,他引:7  
Cucumber ( Cucumis sativus L. cv. Delikatess) and radish ( Raphanus sativus L. cv. Saxa Treib) were grown in a factorial design under two ultraviolet-B (UV–B) irradiances and three levels of water stress. On a weighted, daily dose basis the UV–B radiation treatments were equivalent to ambient levels during the beginning of the growing season (controls) and those predicted for an 11.6% ozone depletion during the summer solstice at 49°N latitude. Water stress was achieved by varying the frequency of watering. The combination of UV–B radiation and water stress resulted in large species differences in the pattern of stomatal resistances. This study indicated that Cucumis is one of the most sensitive crop species to UV–B radiation yet identified and that the primary effect of UV–B radiation in this species is a decrease in the leaf diffusive resistance to water vapor. This, therefore, may result in reductions in growth via increased water stress.  相似文献   

12.
Some flax varieties respond to nutrient stress by modifying their genome and these modifications can be inherited through many generations. Also associated with these genomic changes are heritable phenotypic variations 1,2. The flax variety Stormont Cirrus (Pl) when grown under three different nutrient conditions can either remain inducible (under the control conditions), or become stably modified to either the large or small genotroph by growth under high or low nutrient conditions respectively. The lines resulting from the initial growth under each of these conditions appear to grow better when grown under the same conditions in subsequent generations, notably the Pl line grows best under the control treatment indicating that the plants growing under both the high and low nutrients are under stress. One of the genomic changes that are associated with the induction of heritable changes is the appearance of an insertion element (LIS-1) 3, 4 while the plants are growing under the nutrient stress. With respect to this insertion event, the flax variety Stormont Cirrus (Pl) when grown under three different nutrient conditions can either remain unchanged (under the control conditions), have the insertion appear in all the plants (under low nutrients) and have this transmitted to the next generation, or have the insertion (or parts of it) appear but not be transmitted through generations (under high nutrients) 4. The frequency of the appearance of this insertion indicates that it is under positive selection, which is also consistent with the growth response in subsequent generations. Leaves or meristems harvested at various stages of growth are used for DNA and RNA isolation. The RNA is used to identify variation in expression associated with the various growth environments and/or t he presence/absence of LIS-1. The isolated DNA is used to identify those plants in which the insertion has occurred.  相似文献   

13.
Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy‐dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy‐dominant species can also limit the performance of edge‐dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.  相似文献   

14.
Exposure to ultraviolet-B (UV-B) radiation can lead to oxidative damage in plants. However, plants possess a number of UV-protection mechanisms including screening of potentially damaging UV-B and increased production or activities of antioxidants. The balance or trade-off between these two mechanisms has rarely been studied and is poorly understood. Two isolines of soybean (Glycine max [L.] Merr.) Clark cultivar, the normal line with moderate levels of flavonoids and the magenta line with reduced flavonoids levels, were grown in the field with or without natural levels of UV-B. Leaflet blades of the first trifoliate leaf were harvested after 4–12 days of exposure to the experimental conditions for analysis of active oxygen species (AOS) and antioxidant levels. Solar UV-B radiation caused oxidative stress in both lines and altered AOS metabolism primarily by decreasing superoxide dismutase activity and increasing the activities of ascorbate peroxidase, catalase and glutathione reductase. This resulted in decreased ascorbic acid content and increased dehydroascorbate content. The magenta line had greater oxidative stress than the normal line in spite of its enhanced oxidative defense capacity as compared to the normal line, even under UV-B exclusion. These results indicate enhanced sensitivity in the magenta line, especially under UV-B exclusion that was likely due to the absence of flavonoid epidermal screening compounds and subsequent increased penetration of solar ultraviolet radiation into the leaf.  相似文献   

15.
研究了0.35 W/m2的UV-B辐射、0.4%NACl及其复合胁迫下绿豆(Phaseolus radiatus L.)幼苗光合作用的气孔和非气孔限制.发现各胁迫处理下,幼苗净光合速率、气孔导度、光合能力、羧化效率和Rubisco含量均明显降低;细胞间隙CO2浓度在各胁迫处理前期低于对照,后期高于对照;气孔限制值除复合处理第5天外,其余均高于对照;复合处理下上述指标的变化程度均大于两胁迫因子单独处理.表明各胁迫下光合速率的降低既有气孔因素也有非气孔因素,但前期以气孔限制为主,后期以非气孔限制为主;Rubisco含量的降低是各胁迫下光合速率降低的非气孔因素.  相似文献   

16.
It is generally accepted that ultraviolet (UV) radiation can have adverse affects on phototrophic organisms, independent of ozone depletion. The red intertidal seaweed Pyropia cinnamomea W.A. Nelson (previously Porphyra cinnamomea Sutherland et al. 2011), similar to many other intertidal macrophytes, is exposed to high levels of UV radiation on a daily basis due to emersion in the upper littoral zone. It has been shown that seaweeds, like higher plants, respond to an increased activity of antioxidative enzymes when exposed to stress. However, earlier investigations have shown that P. cinnamomea also compensates for stress due to UV radiation by increasing polyamine (PA) levels, especially bound‐soluble and bound‐insoluble PAs. The PA precursor putrescine (PUT) can be synthesized via two enzymatic pathways: arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). Both of these enzymes showed increased activity in P. cinnamomea under UV stress. In higher plants, ADC is the enzyme responsible for increased PA levels during stress exposure, while ODC is correlated with cell division and reproduction. However, there are contrary findings in the literature. Using two irreversible inhibitors, we identified the enzyme most likely responsible for increased PUT synthesis and therefore increased stress tolerance in P. cinnamomea. Our results show that changes in the PA synthesis pathway in P. cinnamomea under UV stress are based on an increased activity of ADC. When either inhibitor was added, lipid hydroperoxide levels increased even under photosynthetically active radiation, suggesting that PAs are involved in protection mechanisms under normal light conditions as well. We also show that under optimum or low‐stress conditions, ODC activity is correlated with PUT synthesis.  相似文献   

17.
兰春剑  江洪  黄梅玲  胡莉 《生态学报》2011,31(24):7516-7525
通过对UV-B辐射胁迫下亚热带典型木本杨桐幼苗的生长及光合生理的研究,探讨植物对于UV-B辐射胁迫的生理响应及适应性机理,进而揭示UV-B辐射变化对亚热带森林树种的影响.实验设置UV-B辐射滤光组、自然光对照组以及辐射增强组,选择亚热带典型树种杨桐(Cleyera japonica Thunb.)幼苗为实验材料.研究结果表明:(1)增强UV-B辐射会降低杨桐幼苗的叶绿素含量,而降低辐射则会显著促进叶绿素的增加,且这种胁迫在时间上具有积累性.(2)增强或降低辐射强度都会抑制杨桐地径的生长,增强辐射会产生更显著的抑制;降低辐射强度会对杨桐幼苗的株高生长产生促进作用,反之,则会抑制其生长.3个测定期数据综合分析显示随着处理时间的加长,这种胁迫作用有减小的趋势.(3)对光响应曲线的分析表明相对于自然光条件下的UV-B辐射,降低其强度对杨桐幼苗光合作用有显著的促进作用,反之则会抑制,不过抑制作用并不显著;对于光合特征参数的分析表明增强或降低UV-B辐射会显著降低杨桐幼苗的光饱和点(LSP)和光补偿点(LcP),而对最大净光合速率(Amax)、表观光合量子效率(AQY)、暗呼吸速率(Rd)影响均不显著,表明辐射胁迫对杨桐幼苗利用光能的效率影响不大,从而也并未对杨桐的光合作用产生显著性的伤害,但是由于森林树种的多年生特性,这种影响将是积累性的或延迟的,UV-B所造成的光合作用或光能利用率的微小变化都可能会积累成长期影响.因此,对森林树种进行长期研究是必要的.  相似文献   

18.
Elevated seawater temperatures have long been accepted as the principal stressor causing the loss of symbiotic algae in corals and other invertebrates with algal symbionts (i.e., bleaching). A secondary factor associated with coral bleaching is solar irradiance, both its visible (PAR: 400–700 nm) and ultraviolet (UVR: 290–400 nm) portions of the spectrum. Here we examined the synergistic role of solar radiation on thermally induced stress and subsequent bleaching in a common Caribbean coral, Montastraea faveolata. Active fluorescent measurements show that steady-state quantum yields of photosystem II (PSII) fluorescence in the zooxanthellae are markedly depressed when exposed to high solar radiation and elevated temperatures, and the concentration of D1 protein is significantly lower in high light when compared to low light treatments under the same thermal stress. Both photosynthetic pigments and mycosporine-like amino acids (MAAs) are also depressed after experimental exposure to high solar radiation and thermal stress. Host DNA damage is exacerbated under high light conditions and is correlated with the expression of the cell cycle gene p 53, a cellular gatekeeper that modulates the fate of damaged cells between DNA repair processes and apoptotic pathways. These markers of cellular stress in the host and zooxanthellae have in common their response to the enhanced production of reactive oxygen species during exposure to high irradiances of solar radiation and elevated temperatures. Taking these results and previously published data into consideration, we conclude that thermal stress during exposure to high irradiances of solar radiation, or irradiances higher than the current photoacclimatization state, causes damage to both photochemistry and carbon fixation at the same time in zooxanthellae, while DNA damage, apoptosis, or necrosis are occurring in the host tissues of symbiotic cnidarians.Abbreviations PSII Functional absorption cross-section for PSII - Fo, Fm Minimum and maximum yields of chlorophyll a fluorescence measured after dark acclimation (relative units) - Fv Variable fluorescence after dark acclimation (=Fm–Fo), dimensionless - Fv/Fm Maximum quantum yield of photochemistry in PSII measured after dark acclimation, dimensionless - F, Fm Steady-state and maximum yields of chlorophyll a fluorescence measured under ambient light (relative units) - F/Fm Quantum yield of photochemistry in PSII measured at steady state under ambient light Communicated by R.C. Carpenter  相似文献   

19.
电离辐射诱导基因的研究进展   总被引:1,自引:0,他引:1  
电离辐射诱导基因是一类受电离辐射调控表达的基因,其表达随辐射条件和所处生理环境的不同呈现复杂多变的特征。电离辐射诱导基因参与细胞内各种代谢途径,在细胞周期调控、细胞生长调节、细胞凋亡、DNA损伤修复中发挥着重要的作用。介绍了电离辐射诱导基因的种类、功能,及其引起的生物效应的分子机制及应用。  相似文献   

20.
Chromosomal instability in proliferating mammalian cells is characterized by a persistent increase of chromosomal aberrations and rearrangements occurring de novo during successive cell generations. Recent results from many laboratories using a variety of cells and cytogenetic end points show that this phenotype can be induced by low as well as high LET irradiation. A typical feature of chromosomal instability in primary human G0-lymphocytes exposed to γ-irradiation at both high dose rate (45 Gy h−1) and low dose rate (0.024 Gy h−1) is the appearance of novel aberrations in the clonal progeny of the irradiated cell, many generations after the exposure. The same phenotype was observed in lymphocytes that were allowed to recover for 5 days in G0 after the radiation exposure, as well as in hprt-mutant T cell clones. These results demonstrate that neither the acute genotoxic stress caused by high dose rate as compared to low dose rate irradiation, nor a hypothesized conflict between mitogen induced growth stimulation and growth arrest due to radiation damage, seem to be critical conditions for the development chromosomal instability in these cells. In contrast to observations in other cells, no evidence of a persistent decrease of cloning ability was observed in the progeny of radiation-exposed human lymphocytes, and no alteration was observed in their sensitivity to a second radiation exposure. Furthermore, the frequency of CA-repeat length variation at three loci was not increased in the progeny of X-irradiated T cells as compared to non-irradiated cells, which indicates that microsatellite instability is not part of the chromosomal instability phenotype in human T-lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号