首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metals, particularly iron, zinc and copper, have multiple biological roles and are essential elements in biological processes. Among other micronutrients, these metals are frequently available to cells in only limited amounts, thus organisms have evolved highly regulated mechanisms to cope and to compete with their scarcity. The homeostasis of such metals within the animal hosts requires the integration of multiple signals producing depleted environments that restrict the growth of microorganisms, acting as a barrier to infection. As the hosts sequester the necessary transition metals from invading pathogens, some, as is the case of fungi, have evolved elaborate mechanisms to allow their survival and development to establish infection. Metalloregulatory factors allow fungal cells to sense and to adapt to the scarce metal availability in the environment, such as in host tissues. Here we review recent advances in the identification and function of molecules that drive the acquisition and homeostasis of iron, copper and zinc in pathogenic fungi.  相似文献   

2.
Ceruloplasmin, metallothionein, and ferritin are metal-binding proteins with potential antioxidant activity. Despite evidence that they are upregulated in pulmonary tissue after oxidative stress, little is known regarding their influence on trace metal homeostasis. In this study, we have used copper- and zinc-containing superoxide dismutase (Cu/Zn SOD) transgenic-overexpressing and gene knockout mice and hyperoxia to investigate the effects of chronic and acute oxidative stress on the expression of these metalloproteins and to identify their influence on copper, zinc, and iron homeostasis. We found that the oxidative stress-mediated induction of ceruloplasmin and metallothionein in the lung had no effect on tissue levels of copper, iron, or zinc. However, Cu/Zn SOD expression had a marked influence on hepatic copper and iron as well as circulating copper homeostasis. These results suggest that ceruloplasmin and metallothionein may function as antioxidants independent of their role in trace metal homeostasis and that Cu/Zn SOD functions in copper homeostasis via mechanisms distinct from its superoxide scavenging properties.  相似文献   

3.
4.
Metal transporters are a central component in the interaction of algae with their environment. They represent the first line of defense to cellular perturbations in metal concentration, and by analyzing algal metal transporter repertoires, we gain insight into a fundamental aspect of algal biology. The ability of individual algae to thrive in environments with unique geochemistry, compared to non-algal species commonly used as reference organisms for metal homeostasis, provides an opportunity to broaden our understanding of biological metal requirements, preferences and trafficking. Chlamydomonas reinhardtii is the best developed reference organism for the study of algal biology, especially with respect to metal metabolism; however, the diversity of algal niches necessitates a comparative genomic analysis of all sequenced algal genomes. A comparison between known and putative proteins in animals, plants, fungi and algae using protein similarity networks has revealed the presence of novel metal metabolism components in Chlamydomonas including new iron and copper transporters. This analysis also supports the concept that, in terms of metal metabolism, algae from similar niches are more related to one another than to algae from the same phylogenetic clade. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

5.
In this work, several fungi with geoactive properties, including Aspergillus niger, Beauveria caledonica and Serpula himantioides, were used to investigate their potential bioweathering effects on zinc silicate and zinc sulfide ores used in zinc extraction and smelting, to gain understanding of the roles that fungi may play in transformations of such minerals in the soil, and effects on metal mobility. Despite the recalcitrance of these minerals, new biominerals resulted from fungal interactions with both the silicate and the sulfide, largely resulting from organic acid excretion. Zinc oxalate dihydrate was formed through oxalate excretion by the test fungi and the mineral surfaces showed varying patterns of bioweathering and biomineral formation. In addition, calcium oxalate was formed from the calcium present in the mineral ore fractions, as well as calcite. Such metal immobilization may indicate that the significance of fungi in effecting metal mobilization from mineral ores such as zinc silicate and zinc sulfide is rather limited, especially if compared with bacterial sulfide leaching. Nevertheless, important bioweathering activities of fungi are confirmed which could be of local significance in soils polluted by such materials, as well as in the mycorrhizosphere.  相似文献   

6.
7.
Chloroplastic and mitochondrial metal homeostasis   总被引:1,自引:0,他引:1  
Transition metal deficiency has a strong impact on the growth and survival of an organism. Indeed, transition metals, such as iron, copper, manganese and zinc, constitute essential cofactors for many key cellular functions. Both photosynthesis and respiration rely on metal cofactor-mediated electron transport chains. Chloroplasts and mitochondria are, therefore, organelles with high metal ion demand and represent essential components of the metal homeostasis network in photosynthetic cells. In this review, we describe the metal requirements of chloroplasts and mitochondria, the acclimation of their functions to metal deficiency and recent advances in our understanding of their contributions to cellular metal homeostasis, the control of the cellular redox status and the synthesis of metal cofactors.  相似文献   

8.
Aspergillus niger absorbs copper and zinc from swine wastewater   总被引:1,自引:0,他引:1  
Wastewater from swine confined-housing operations contains elevated levels of copper and zinc due to their abundance in feed. These metals may accumulate to phytotoxic levels in some agricultural soils of North Carolina due to land application of treated swine effluent. We evaluated fungi for their ability to remove these metals from wastewater and found Aspergillus niger best suited for this purpose. A. niger was able to grow on plates amended with copper at a level five times that inhibitory to the growth of Saccharomyes cerevisiae. We also found evidence for internal absorption as the mechanism used by A. niger to detoxify its environment of copper, a property of the fungus that has not been previously exploited for metal bioremediation. In this report, we show that A. niger is capable of removing 91% of the copper and 70% of the zinc from treated swine effluent.  相似文献   

9.
Although the prion protein (PrP) is known to be the causative agent of the neurodegenerative transmissible spongiform encephalopathies, its normal cellular function remains elusive. Octapeptide repeats in the N terminus of PrP bind metal ions and are required for the endocytosis of PrP upon exposure of cells to copper or zinc. As the concentration of zinc in the extracellular spaces of the brain is higher than that for copper, we put forward the hypothesis that PrP is involved in neuronal zinc homeostasis; PrP might be involved in transport of zinc into the cell or might act as a zinc sensor. In prion disease, when the protein undergoes a conformational change to the infectious form, this function of PrP in zinc homeostasis might be compromised.  相似文献   

10.
Metal ion homeostasis is important for healthy cell function and is regulated by metal ion transporters and chaperones. To explore metal ion binding to membrane transport proteins we have used cadmium-113 as a solid state NMR probe of the Escherichia coli zinc exporter ZitB present in native membrane preparations. Competition experiments with other metal ions indicated that nickel and copper are also able to bind to this protein. Metal ion uptake studies were also performed using ZitB-reconstituted into proteoliposomes for a well established fluorescence assay. The results of both the solid state NMR and the uptake studies demonstrate that ZitB is potentially capable of transporting not only zinc but also cadmium, nickel and copper. The solid state NMR approach therefore offers great potential for defining the substrate spectrum of metal ion transporter proteins in their native membrane environments. Further, it should be useful for functional dissection of transporter mechanisms by facilitating the identification of functional residues by mutational studies.  相似文献   

11.
Recent studies suggest that synaptic pathology in autism spectrum disorder (ASD) might be caused by the disruption of a signaling pathway at excitatory glutamatergic synapses, which can be influenced by environmental factors. Some factors, such as prenatal zinc deficiency, dysfunction of metallothioneins as well as deletion of COMMD1, all affect brain metal-ion homeostasis and have been associated with ASD. Given that COMMD1 regulates copper levels and that copper and zinc have antagonistic properties, here, we followed the idea that copper overload might induce a local zinc deficiency affecting key players of a putative ASD pathway such as ProSAP/Shank proteins as reported before. Our results show that increased copper levels indeed interfere with intracellular zinc concentrations and affect synaptic ProSAP/Shank levels, which similarly are altered by manipulation of copper and zinc levels through overexpression and knockdown of COMMD1. In line with this, acute and prenatal copper overload lead to local zinc deficiencies in mice. Pups exposed to prenatal copper overload furthermore show a reduction in ProSAP/Shank protein levels in the brain as well as a decreased NMDAR subunit 1 concentration. Thus, it might be likely that brain metal ion status influences a distinct pathway in excitatory synapses associated with genetic forms of ASD.  相似文献   

12.
Alzheimer’s disease is the leading cause of dementia in the elderly and is defined by two pathological hallmarks; the accumulation of aggregated amyloid beta and excessively phosphorylated Tau proteins. The etiology of Alzheimer’s disease progression is still debated, however, increased oxidative stress is an early and sustained event that underlies much of the neurotoxicity and consequent neuronal loss. Amyloid beta is a metal binding protein and copper, zinc and iron promote amyloid beta oligomer formation. Additionally, copper and iron are redox active and can generate reactive oxygen species via Fenton (and Fenton-like chemistry) and the Haber–Weiss reaction. Copper, zinc and iron are naturally abundant in the brain but Alzheimer’s disease brain contains elevated concentrations of these metals in areas of amyloid plaque pathology. Amyloid beta can become pro-oxidant and when complexed to copper or iron it can generate hydrogen peroxide. Accumulating evidence suggests that copper, zinc, and iron homeostasis may become perturbed in Alzheimer’s disease and could underlie an increased oxidative stress burden. In this review we discuss oxidative/nitrosative stress in Alzheimer’s disease with a focus on the role that metals play in this process. Recent studies have started to elucidate molecular links with oxidative/nitrosative stress and Alzheimer’s disease. Finally, we discuss metal binding compounds that are designed to cross the blood brain barrier and restore metal homeostasis as potential Alzheimer’s disease therapeutics.  相似文献   

13.
In order to study the involvement of metals in the progression of Alzheimer’s disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer’s disease.  相似文献   

14.
Zinc can occur in extremely high concentrations in acidic, heavy metal polluted environments inhabited by acidophilic prokaryotes. Although these organisms are able to thrive in such severely contaminated ecosystems their resistance mechanisms have not been well studied. Bioinformatic analysis of a range of acidophilic bacterial and archaeal genomes identified homologues of several known zinc homeostasis systems. These included primary and secondary transporters, such as the primary heavy metal exporter ZntA and Nramp super-family secondary importer MntH. Three acidophilic model microorganisms, the archaeon ??Ferroplasma acidarmanus??, the Gram negative bacterium Acidithiobacillus caldus, and the Gram positive bacterium Acidimicrobium ferrooxidans, were selected for detailed analyses. Zinc speciation modeling of the growth media demonstrated that a large fraction of the free metal ion is complexed, potentially affecting its toxicity. Indeed, many of the putative zinc homeostasis genes were constitutively expressed and with the exception of ??F. acidarmanus?? ZntA, they were not up-regulated in the presence of excess zinc. Proteomic analysis revealed that zinc played a role in oxidative stress in At. caldus and Am. ferrooxidans. Furthermore, ??F. acidarmanus?? kept a constant level of intracellular zinc over all conditions tested whereas the intracellular levels increased with increasing zinc exposure in the remaining organisms.  相似文献   

15.
Transporters of ligands for essential metal ions in plants   总被引:5,自引:1,他引:5  
Essential metals are required for healthy plant growth but can be toxic when present in excess. Therefore plants have mechanisms of metal homeostasis which involve coordination of metal ion transporters for uptake, translocation and compartmentalization. However, very little metal in plants is thought to exist as free ions. A number of small, organic molecules have been implicated in metal ion homeostasis as metal ion ligands to facilitate uptake and transport of metal ions with low solubility and also as chelators implicated in sequestration for metal tolerance and storage. Ligands for a number of essential metals have been identified and proteins involved in the transport of these ligands and of metal-ligand complexes have been characterized. Here we review recent advances in understanding the role of mugineic acid, nicotianamine, organic acids (citrate and malate), histidine and phytate as ligands for iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and nickel (Ni) in plants, and the proteins identified as their transporters.  相似文献   

16.
The immunomodulatory and antimicrobial properties of zinc and copper have long been appreciated. In addition, these metal ions are also essential for microbial growth and survival. This presents opportunities for the host to either harness their antimicrobial properties or limit their availability as defence strategies. Recent studies have shed some light on mechanisms by which copper and zinc regulation contribute to host defence, but there remain many unanswered questions at the cellular and molecular levels. Here we review the roles of these two metal ions in providing protection against infectious diseases in vivo, and in regulating innate immune responses. In particular, we focus on studies implicating zinc and copper in macrophage antimicrobial pathways, as well as the specific host genes encoding zinc transporters (SLC30A, SLC39A family members) and CTRs (copper transporters, ATP7 family members) that may contribute to pathogen control by these cells.  相似文献   

17.
Trichomycete fungi are associated with digestive tract of black fly larvae. These fungi have not been studied in Brazil, knowing them and their relationship with black flies could be an alternative to control vector populations. The objectives of this study were to survey the Trichomycete fungi associated with larvae of Simulium goeldii and S. ulyssesi, and to determine if there is specificity and/or difference in the infection rates in these species. Black flies were collected in Central Amaz?nia, Brazil. Three genera of Trichomycetes were found: Harpella, Genistellospora and Smittium. All these fungi were common to both black fly species.  相似文献   

18.
Biologically active metals such as copper, zinc and iron are fundamental for sustaining life in different organisms with the regulation of cellular metal homeostasis tightly controlled through proteins that coordinate metal uptake, efflux and detoxification. Many of the proteins involved in either uptake or efflux of metals are localised and function on the plasma membrane, traffic between intracellular compartments depending upon the cellular metal environment and can undergo recycling via the endosomal pathway. The biogenesis of exosomes also occurs within the endosomal system, with several major neurodegenerative disease proteins shown to be released in association with these vesicles, including the amyloid‐β (Aβ) peptide in Alzheimer's disease and the infectious prion protein involved in Prion diseases. Aβ peptide and the prion protein also bind biologically active metals and are postulated to play important roles in metal homeostasis. In this review, we will discuss the role of extracellular vesicles in Alzheimer's and Prion diseases and explore their potential contribution to metal homeostasis.  相似文献   

19.
20.
Nutrient metals such as zinc are both essential to life and potentially toxic if overaccumulated by cells. Non-essential toxic metals like cadmium can enter cells through the uptake transporters responsible for nutrient metal acquisition. Therefore, in the face of ever changing extracellular metal levels, organisms tightly control their intracellular levels of nutrient metals and prevent accumulation of toxic metals. We show here that post-translational inactivation of the yeast Zrt1 zinc uptake transporter is important for zinc homeostasis. During the transition from zinc-limiting to zinc-replete growth conditions (i.e. zinc shock), the Zrt1 transporter is ubiquitinated, endocytosed, and subsequently degraded in the vacuole. To further understand this process at a molecular level, we mapped a region of Zrt1 required for ubiquitination and endocytosis in response to zinc to a domain located on the intracellular surface of the plasma membrane. This domain is a critical cis-acting component of the metal signaling pathway that controls Zrt1 protein trafficking. Using mutant alleles defective for metal-responsive inactivation, we also show that Zrt1 inactivation may be an important mechanism for preventing cadmium uptake and toxicity in zinc-limited cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号