首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses of Puccinellia distans, a halophytic grass to low (50 mM) and high (200 mM) NaCl salinity, were studied in a sand culture experiment without or with inoculation by arbuscular mycorrhizal fungus (AMF), Claroideoglomus etunicatum isolated from its saline habitat. Plant biomass was not influenced by salinity levels, while a tendency to a higher biomass was observed in AMF plants under both control and saline conditions. Leaf photosynthesis increased by both salinity and AMF inoculation. Despite higher transpiration rate, AMF plants had higher water-use efficiency under sever saline conditions. AMF inoculation decreased proline concentration, but increased significantly leaf osmotic potential. Antioxidative enzymes responded differently to the salt and AMF treatments depending on the salt concentration and plant organ. Nonetheless, salt-induced malondialdehyde accumulation in the leaves diminished by AMF colonization. K and Ca contents were not affected by salt, while fungal colonization increased K in the roots and Ca in both leaves and roots. Our results indicated that enhancement of photosynthesis and ion homeostasis is involved in the tolerance of P. distans to both low and high salinity. AMF inoculation increased plants’ tolerance by augmentation of the above mechanisms accompanied by improvement of water relations and protection against oxidative damage in the leaves.  相似文献   

2.
Greenhouse and field experiments were carried out in order to investigate the influence of mycorrhizal inoculation on total phenolic content (TPC) and antioxidant activity, expressed as antiradical power (ARP), of artichoke (Cynara cardunculus L. var. scolymus F.) leaves and flower heads extracts. The establishment of mycorrhizal symbiosis was monitored in pot and field grown plants, and the persistence of the inoculated AMF in roots after 2 years’ growth in the field was assessed by fungal ITS sequencing. Both in the greenhouse and in the field, marked increases in TPC and ARP were detected in leaves and flower heads of artichoke plants inoculated with the AM fungal species Glomus intraradices, either alone or in mixture with Glomus mosseae. In the field, plants inoculated with Glomus mix showed flower heads ARP content increases of 52.7 and 30.0% in the first and second year, respectively, compared with uninoculated plants. After 2 years’ growth in the field ITS rDNA sequences clustering with those of G. mosseae and G. intraradices were retrieved only from inoculated plant roots. Our data show that mycorrhizal inoculation may represent an efficient and sustainable strategy to improve productivity and enhance plant biosynthesis of secondary metabolites with health promoting activities.  相似文献   

3.
The aim of this study was to compare the mycorrhizal responsiveness among old and recent Chinese maize genotypes (released from 1950s to 2008) in low- and high-Olsen-P soils and to identify parameters that would indicate the relationships between the mycorrhizal responsiveness and the functional traits related to P uptake of maize. A greenhouse factorial experiment was conducted. The factors were maize genotype [Huangmaya (HMY), Zhongdan 2 (ZD2), Nongda 108 (ND108), and NE15], inoculation with or without arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis), and Olsen-P levels (4, 9, 18, 36, or 60 mg P kg?1). Old and recently released genotypes differed in their response to AMF under low- and high-P supply. Three kinds of responses (in terms of shoot growth) were observed: the response was positive if the soil P content was low, but negative if the soil Olsen-P content was high (HMY and ND108); the response was neutral regardless of soil P content (ZD2); and the response was positive regardless of soil P content (NE15). Principle component (PC) analysis showed that the first PC comprised morphological and physiological traits of maize roots, and the second PC comprised mycorrhizal traits. The opposite was the case, however, in high-P soil. It is concluded that maize breeding selection from 1950s to 2000s is not always against the AM association and that AMF play positive roles in promoting the growth of some maize genotypes in high-P soil. The root length colonization by efficient AMF might be a useful parameter for breeding varieties with increased mycorrhizal responsiveness.  相似文献   

4.
Drought is the main limiting factor for plant growth in karst areas with a fragile ecological environment. Cinnamomum migao H.W. Li is an endemic medicinal woody plant present in the karst areas of southwestern China, and it is endangered due to poor drought tolerance. Arbuscular mycorrhizal fungi (AMF) are known to enhance the drought tolerance of plants. However, few studies have examined the contribution of AMF in improving the drought tolerance of C. migao seedlings. Therefore, we conducted a series of experiments to determine whether a single inoculation and coinoculation of AMF (Claroideoglomus lamellosum and Claroideoglomus etunicatum) enhanced the drought tolerance of C. migao. Furthermore, we compared the effects of single inoculation and coinoculation with different inoculum sizes (20, 40, 60, and 100 g; four replicates per treatment) on mycorrhizal colonization rate, plant growth, photosynthetic parameters, antioxidant enzyme activity, and malondialdehyde (MDA) and osmoregulatory substance contents. The results showed that compared with nonmycorrhizal plants, AMF colonization significantly improved plant growing status; net photosynthetic rate; superoxide dismutase, catalase, and peroxidase activities; and soluble sugar, soluble protein, and proline contents. Furthermore, AMF colonization increased relative water content and reduced MDA content in cells. These combined cumulative effects of AMF symbiosis ultimately enhanced the drought tolerance of seedlings and were closely related to the inoculum size. With an increase in inoculum size, the growth rate and drought tolerance of plants first increased and then decreased. The damage caused by drought stress could be reduced by inoculating 40–60 g of AMF, and the effect of coinoculation was significantly better than that of single inoculation at 60 g of AMF, while the effect was opposite at 40 g of AMF. Additionally, the interaction between AMF and inoculum sizes had a significant effect on drought tolerance. In conclusion, the inoculation of the AMF (Cl. lamellosum and Cl. etunicatum) improved photosynthesis, activated antioxidant enzymes, regulated cell osmotic state, and enhanced the drought tolerance of C. migao, enabling its growth in fragile ecological environments.  相似文献   

5.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

6.

Aims and Background

Many plants preferentially grow roots into P-enriched soil patches, but little is known about how the presence of arbuscular mycorrhizal fungi (AMF) affects this response.

Methods

Lotus japonicus (L.) was grown in a low-P soil with (a) no additional P, (b) homogeneous P (28 mg pot?1), (c) low heterogeneous P (9.3 mg pot?1), and (d) high heterogeneous P (28 mg pot?1). Each P treatment was combined with one of three mycorrhiza treatments: no mycorrhizae, Glomus intraradices, indigenous AMF. Real-time PCR was used to assess the abundance of G. intraradices and the indigeneous AMF G. mosseae and G. claroideum.

Results

Mycorrhization and P fertilization strongly increased plant growth. Homogeneous P supply enhanced growth in both mycorrhizal treatments, while heterogeneous P fertilization increased biomass production only in treatments with indigenous AMF inoculation. Preferential root allocation into P-enriched soil was significant only in absence of AMF. The abundance of AMF species was similar in P-enriched and unfertilized soil patches.

Conclusion

Mycorrhization may completely override preferential root growth responses of plants to P- patchiness in soil. The advantage of this effect for the plants is to give roots more freedom to forage for other resources in demand for growth and to adapt to variable soil conditions.  相似文献   

7.
Vinca (Catharanthus roseus (L.) G. Don.) is an important medicinal plant species from which antineoplastic alkaloids such as vinblastine are extracted. However, neither abiotic stress nor inoculation of arbuscular mycorrhizal fungi (AMF) has been evaluated on the accumulation of vinca alkaloids under controlled conditions. This study evaluated the effects of AMF and/or abiotic stress induced by the application of potassium bicarbonate (KHCO3) and/or sodium chloride (NaCl) on plant growth, and on total content of phenolic compounds (TCPC), total antioxidant activity (TAOX), and total content of vinblastine alkaloid in leaves of vinca. TCPC, TAOX, and vinblastine were measured via spectrophotometric methods. After 75 days under greenhouse conditions, either the AMF inoculation without abiotic stress or the application of KHCO3 (2.5 and 7.5 mM) resulted in significantly (P?≤?0.001) enhanced plant growth, TCPC, TAOX, and total content of vinblastine. The application of NaCl significantly diminished plant growth, but did not stimulate the content of vinblastine. The combined application of NaCl and KHCO3 significantly decreased AMF-colonization in roots. The sole inoculation of AMF or the single application of 7.5 mM KHCO3 induced the accumulation of vinblastine in leaves of vinca.  相似文献   

8.
Plant Zn uptake from low Zn soils can be increased by Zn-mobilizing chemical rhizosphere processes. We studied whether inoculation with arbuscular mycorrhizal fungi (AMF) can be an additional or an alternative strategy. We determined the effect of AMF inoculation on growth performance and Zn uptake by rice genotypes varying in Zn uptake when nonmycorrhizal. A pot experiment was conducted with six aerobic rice genotypes inoculated with Glomus mosseae or G. etunicatum or without AMF on a low Zn soil. Plant growth, Zn uptake and mycorrhizal responsiveness were determined. AMF-inoculated plants produced more biomass and took up more Zn than nonmycorrhizal controls. Mycorrhizal inoculation, however, significantly increased Zn uptake only in genotypes that had a low Zn uptake in the nonmycorrhizal condition. We conclude that genotypes that are less efficient in Zn uptake when nonmycorrhizal are more responsive to AMF inoculation. We provide examples from literature allowing generalization of this conclusion on a trade off between mycorrhizal responsiveness and nutrient uptake efficiency.  相似文献   

9.

Key message

Outplanted Polylepis australis seedling growth, survival and mycorrhizal response were not influenced by inoculation with soil from different vegetation types. Seedling inoculation would not be essential for reforestation practices.

Abstract

Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been recommended. To determine whether native soil inoculation could help in reforestation success, a field trial was set up to evaluate the response of outplanted P. australis seedlings to the inoculation with soils from three vegetation types (a grassland, a mature forest and a degraded forest) and a sterile soil, used as control. We evaluated seedlings performance: growth and survival for 18 months, root/shoot ratio, phosphorous content and arbuscular mycorrhizal fungal (AMF) colonization. To interpret performance patterns we evaluated the colonization potential of the three inoculum soils and the changes of the AMF community composition of the seedlings rhizosphere in relation to inoculation treatment and season. Our main results showed no significant differences in seedlings survival and growth between treatments. The colonization potential of grassland and degraded forest soils was ~25 times greater than mature forest soil and specific spore density of some morphospecies varied with season. However, AMF spore community of seedlings rhizosphere became homogenized after outplanting and was similar between treatments after 12 months. Therefore, we conclude that soil inoculation is not essential for outplanted P. australis survival and increase in height, and thus all the tested soils could be used as inocula, including grassland soils which in practice are the easiest to collect.  相似文献   

10.
Invasive plant species can interact with native soil microbes in ways that change how they use nutrients and allocate biomass. To examine whether Microstegium vimineum form symbiotic associations with arbuscular mycorrhizal fungi (AMF) and whether AMF mediate nutrient acquisition and growth of the plant, we conducted a field survey in Raleigh, NC and Hangzhou, China and two experiments in growth chambers. This is the first report that M. vimineum is mycorrhizal, with colonization rates of 47 and 21 % in its native and invaded range, respectively. In the growth chamber, addition of an AMF inoculum mixture significantly promoted M. vimineum biomass accumulation in both field and sterilized soils, particularly after 64 days of growth. Arbuscular mycorrhizal fungi also increased plant phosphorous (P) uptake but did not consistently affect total plant nitrogen (N) acquisition, leading to decreases in plant N:P ratios. More interestingly, AMF significantly altered plant morphology, increasing the number of stolons and aerial roots per individual (59 and 723 %), aerial roots per gram aboveground biomass (374 %) and aerial roots per stolon (404 %). Our results suggest that mycorrhizal enhancement of plant growth by stimulating tillering may serve as another mechanism by which M. vimineum can quickly take over new territory. Future studies on invasive plant-microbial interactions are needed to understand the mechanisms through which microbes contribute to the competitive ability of invasive plants.  相似文献   

11.
The fungus Fusarium oxysporum f. sp. lycopersici (FOL) is known to cause vascular wilt on tomato almost over the world. Inoculation of FOL reduced plant growth and increased wilt of tomato. The following study examined the possible role of arbuscular mycorrhizal fungi (AMF) consortium comprising of Rhizophagus intraradices, Funneliformis mosseae and Claroideoglomus etunicatum against FOL in tomato and explored in an inducing plant systemic defense. AMF inoculation reduced the wilt disease within vascular tissue and in vivo production of fusaric acid was observed which may be responsible in reduced wilting. FOL had an antagonistic effect on AMF colonization, reduced the number of spores, arbuscules and vesicles. AMF also inhibited the damage induced by Fusarium wilt through increasing chlorophyll contents along with the activity of phosphate metabolising enzymes (acid and alkaline phosphatases). Moreover, tomato plants with mycorrhizal inoculation showed an increase in the level of antioxidant enzymes including glutathione reductase, catalase, and etc. with an ultimate influence on the elimination of reactive oxygen species. Moreover, rise in phosphatase along with antioxidant enzymatic systems and enhanced photosynthetic performance contributed to induced resistance against FOL in tomato.  相似文献   

12.
Sesame (Sesamum indicum L.) is an important staple crop of the family Pedaliaceae. The commercial production of sesame is still dependent on the applications of chemical fertilizers. Mycorrhiza inoculum resulted in better morphological and biochemical traits in vegetables. Thus, here the outcome of arbuscular mycorrhizal fungi (AMF) and Pseudomonas fluorescence (ATCC-17400) inoculation was studied in the pot culture experiment. Primarily, there seems to be a promising opportunity of AMF in sesame under pot and field trials because of enhanced morphological parameters, especially root weight, and disparities in nutrients and metabolites. The AMF appears to be an option to boost plant growth, mineral content, and sesame yield. The AMF treatment with Pseudomonas fluorescence strain (ATCC-17400) determined the maximum values for the morphological traits and mineral content. Overall, our study highlights mycorrhizal fungi and other microbes efficacy in achieving a successful sesame production.  相似文献   

13.
Arbuscular mycorrhizal fungi have mutualistic symbiosis with higher plants, increasing plant resistance to environmental stresses and nutrient uptake and improving soil. During arbuscular mycorrhizal symbiosis, a range of chemical and biological factors are affected. In this study, two species of arbuscular mycorrhiza (Glomus mosseae and G. intraradices) were used to assess the effects of inoculation on licorice growth and secondary metabolite production. After successful inoculation, the increase in the growth rate, P and Zn uptake, and the accumulation of secondary metabolites in licorice (Glycyrrhiza glabra L.) roots were observed in two periods of 3 and 6 months compared to control. After 6 months, more increments in growth, secondary metabolites, and P and Zn uptake were observed compared with the first 3-months period. Two groups of secondary metabolites arising from phenolic and terpenoid metabolism obviously responded to mycorrhizal fungi colonization in licorice roots.  相似文献   

14.
In the terrestrial ecosystems, soil is an important component, characterized by holding high diversity of microorganisms which play a key role for productivity and vegetal composition. The group of symbionts microorganisms stands out for contributing directly to the growth and plant nutrition, and among them, the arbuscular mycorrhizal fungi form one of the oldest and well established associations. In order to increase the knowledge and contribute for further research with AMF and plants of Caatinga, in this review we compile data from previous studies on the effects of symbiosis between arbuscular mycorrhizal fungi (AMF) and plants of the Caatinga, a type of dry tropical forest found in the northeast of Brazil. These studies collected data under various experimental conditions, emphasizing fungal efficiency and host responsiveness in soils with varied fertility. From our analysis we conclude that in general the symbiotic efficiency on these plants depends on many factors, such as the plant-fungi combination, fertility and soil type. Furthermore, in leguminosae the impact of a joint inoculation with nitrogen fixing bacteria must be taken into account. Claroideoglomus etunicatum was the most tested AMF species benefiting almost all plants tested. Approximately 30 plant species were studied regarding possible benefits provided by AMF and of these only Hymenea courbaril and Aspidosperma pyrifolium did not respond to mycorrhization. Higher efficiency of the mycorrhizal symbiosis can be obtained in soils with low P levels, emphasizing the essential role of these microorganisms in the growth and survival of plant species from the Caatinga biome.  相似文献   

15.
16.
Mohammad MJ  Pan WL  Kennedy AC 《Mycorrhiza》2005,15(4):259-266
Plexiglass pot growth chamber experiments were conducted to evaluate the chemical alterations in the rhizosphere of mycorrhizal wheat roots after inoculation with Glomus intraradices [arbuscular mycorrhizal fungus (AMF)]. Exchange resins were used as sinks for nutrients to determine whether the inoculated plant can increase the solubility and the uptake of P and micronutrients. Treatments included: (1) soil (bulk soil); (2) AMF inoculation no P addition (I–P); (3) no inoculation with no P addition (NI–P); (4) AMF inoculation with addition of 50 mg P (kg soil)–1 (I+P), and (5) no inoculation with addition of 50 mg P (kg soil)–1 (NI+P). The AMF inoculum was added at a rate of four spores of G. intraradices (g soil)–1. The exchange resin membranes were inserted vertically 5 cm apart in the middle of Plexiglass pots. Spring wheat (Triticum aestivum cv. Len) was planted in each Plexiglass pot and grown for 2 weeks in a growth chamber where water was maintained at field capacity. Rhizosphere pH and redox potential (Eh), nutrient bioavailability indices and mycorrhizal colonization were determined. Mycorrhizal inoculation increased the colonization more when P was not added, but did not increase the shoot dry weight at either P level. The rhizosphere pH was lower in the inoculated plants compared to the noninoculated plants in the absence of added P, while the Eh did not change. The decrease in pH in the rhizosphere of inoculated plants could be responsible for the increased P and Zn uptake observed with inoculation. In contrast, Mn uptake was decreased by inoculation. The resin-adsorbed P was increased by inoculation, which, along with the bioavailability index data, may indicate that mycorrhizal roots were able to increase the solubility of soil P.  相似文献   

17.

Background and aims

Long-fallow disorder is expressed as exacerbated deficiencies of phosphorus (P) and/or zinc (Zn) in field crops growing after long periods of weed-free fallow. The hypothesis that arbuscular-mycorrhizal fungi (AMF) improve the P and Zn nutrition, and thereby biomass production and seed yield of linseed (Linum usitatissimum) was tested in a field experiment.

Methods

A factorial combination of treatments consisting of ± fumigation, ±AMF inoculation with Glomus spp., ±P and ±Zn fertilisers was used on a long-fallowed vertisol. The use of such methods allowed an absolute comparison of plants growing with and without AMF in the field for the first time in a soil disposed to long-fallow disorder.

Results

Plant biomass, height, P and Zn concentrations and contents, boll number and final seed yield were (a) least in fumigated soil with negligible AMF colonisation of the roots, (b) low initially in long-fallow soil but increased with time as AMF colonisation of the roots developed, and (c) greatest in soil inoculated with AMF cultures. The results showed for the first time in the field that inflows of both P and Zn into linseed roots were highly dependent on %AMF-colonisation (R2?=?0.95 for P and 0.85 for Zn, P?<?0.001) in a soil disposed to long-fallow disorder. Relative field mycorrhizal dependencies without and with P+Zn fertiliser were 85 % and 86 % for biomass and 68 % and 52 % for seed yield respectively.

Conclusions

This research showed in the field that AMF greatly improved the P and Zn nutrition, biomass production and seed yield of linseed growing in a soil disposed to long-fallow disorder. The level of mycorrhizal colonisation of plants suffering from long-fallow disorder can increase during the growing season resulting in improved plant growth and residual AMF inoculum in the soil, and thus it is important for growers to recognise the cause and not terminate a poor crop prematurely in order to sow another. Other positive management options to reduce long fallows and foster AMF include adoption of conservation tillage and opportunity cropping.  相似文献   

18.
A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered parameters when considering the use of AMF as biocontrol agents.  相似文献   

19.
The present study evaluated the effects of inoculation with arbuscular mycorrhizal fungi (AMF; Glomus iranicum var. tenuihypharum sp. nova) on the physiological performance and production of lettuce plants grown under greenhouse conditions and supplied with reclaimed water (RW; urban-treated wastewater with high electrical conductivity; 4.19 dS m?1). Four treatments, fresh water, fresh water plus AMF inoculation, RW and RW plus AMF inoculation, were applied and their effects, over time, analyzed. Root mycorrhizal colonization, plant biomass, leaf-ion content, stomatal conductance and net photosynthesis were assessed. Overall, our results highlight the significance of the AMF in alleviation of salt stress and their beneficial effects on plant growth and productivity. Inoculated plants increased the ability to acquire N, Ca, and K from both non-saline and saline media. Moreover, mycorrhization significantly reduced Na plant uptake. Under RW conditions, inoculated plants also showed a better performance of physiological parameters such as net photosynthesis, stomatal conductance and water-use efficiency than non-mycorrhizal plants. Additionally, the high concentration of nutrients already dissolved in reclaimed water suggested that adjustments in the calculation of the fertigation should be conducted by farmers. Finally, this experiment has proved that mycorrhization could be a suitable way to induce salt stress resistance in iceberg lettuce crops as plants supplied with reclaimed water satisfied minimum legal commercial size thresholds. Moreover, the maximum values of Escherichia coli in the reclaimed water were close to but never exceeded the international thresholds established (Spanish Royal Decree 1620/2007; Italian Decree, 2003) and hence lettuces were apt for sale.  相似文献   

20.
Arbuscular mycorrhizal fungi (AMF) enhance nutrient provision in exchange for carbon. However, a shift from nutrient to carbon limitation, induced by repeated or intense defoliation, can represent a trade-off between plant regrowth and the maintenance of mycorrhiza. The combined effects of AMF, phosphorus and defoliation on growth of Agropyron elongatum (C3 grass, low mycorrhizal responsiveness) and Brachiaria brizantha (C4 grass, high mycorrhizal responsiveness) were explored. Each species was subjected to a manipulative experiment with AMF inoculation (non-inoculated, inoculated), soluble P supply (low, high) and defoliation (non-defoliated, 60% defoliated). In A. elongatum, at low P supply, mycorrhizal plants showed increased growth rates following defoliation without substantial changes in AMF colonization. At high P supply instead, we found a clear trade-off between regrowth and the maintenance of mycorrhiza evidenced by growth depression (biomass and tillers) and lower AMF activity (reduction of arbuscules). In contrast, in B. brizantha, defoliation effects on plant regrowth were independent from AMF at any P supply (no trade-off). This indicates that cost-benefit relationship in defoliated plants is highly context-dependent and may vary with mycorrhizal responsiveness of species. This variation of responses can play a decisive role on plant recovery in pastures and natural grasslands subjected to herbivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号