首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanistic studies on gliotoxin biosynthesis and self-protection in Aspergillus fumigatus, both of which require the gliotoxin oxidoreductase GliT, have revealed a rich landscape of highly novel biochemistries, yet key aspects of this complex molecular architecture remain obscure. Here we show that an A. fumigatus ΔgliA strain is completely deficient in gliotoxin secretion but still retains the ability to efflux bisdethiobis(methylthio)gliotoxin (BmGT). This correlates with a significant increase in sensitivity to exogenous gliotoxin because gliotoxin trapped inside the cell leads to (i) activation of the gli cluster, as disabling gli cluster activation, via gliZ deletion, attenuates the sensitivity of an A. fumigatus ΔgliT strain to gliotoxin, thus implicating cluster activation as a factor in gliotoxin sensitivity, and (ii) increased methylation activity due to excess substrate (dithiol gliotoxin) for the gliotoxin bis-thiomethyltransferase GtmA. Intracellular dithiol gliotoxin is oxidized by GliT and subsequently effluxed by GliA. In the absence of GliA, gliotoxin persists in the cell and is converted to BmGT, with levels significantly higher than those in the wild type. Similarly, in the ΔgliT strain, gliotoxin oxidation is impeded, and methylation occurs unchecked, leading to significant S-adenosylmethionine (SAM) depletion and S-adenosylhomocysteine (SAH) overproduction. This in turn significantly contributes to the observed hypersensitivity of gliT-deficient A. fumigatus to gliotoxin. Our observations reveal a key role for GliT in preventing dysregulation of the methyl/methionine cycle to control intracellular SAM and SAH homeostasis during gliotoxin biosynthesis and exposure. Moreover, we reveal attenuated GliT abundance in the A. fumigatus ΔgliK strain, but not the ΔgliG strain, following exposure to gliotoxin, correlating with relative sensitivities. Overall, we illuminate new systems interactions that have evolved in gliotoxin-producing, compared to gliotoxin-naive, fungi to facilitate their cellular presence.  相似文献   

2.
3.
A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18) from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001), confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05) of proliferating cell nuclear antigen (PCNA), NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05) of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05) involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05) of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism.  相似文献   

4.
The function of a number of genes in the gliotoxin biosynthetic cluster (gli) in Aspergillus fumigatus remains unknown. Here, we demonstrate that gliK deletion from two strains of A. fumigatus completely abolished gliotoxin biosynthesis. Furthermore, exogenous H2O2 (1 mM), but not gliotoxin, significantly induced A. fumigatus gliK expression (P = 0.0101). While both mutants exhibited significant sensitivity to both exogenous gliotoxin (P < 0.001) and H2O2 (P < 0.01), unexpectedly, exogenous gliotoxin relieved H2O2-induced growth inhibition in a dose-dependent manner (0 to 10 μg/ml). Gliotoxin-containing organic extracts derived from A. fumigatus ATCC 26933 significantly inhibited (P < 0.05) the growth of the ΔgliK26933 deletion mutant. The A. fumigatus ΔgliK26933 mutant secreted metabolites, devoid of disulfide linkages or free thiols, that were detectable by reverse-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry with m/z 394 to 396. These metabolites (m/z 394 to 396) were present at significantly higher levels in the culture supernatants of the A. fumigatus ΔgliK26933 mutant than in those of the wild type (P = 0.0024 [fold difference, 24] and P = 0.0003 [fold difference, 9.6], respectively) and were absent from A. fumigatus ΔgliG. Significantly elevated levels of ergothioneine were present in aqueous mycelial extracts of the A. fumigatus ΔgliK26933 mutant compared to the wild type (P < 0.001). Determination of the gliotoxin uptake rate revealed a significant difference (P = 0.0045) between that of A. fumigatus ATCC 46645 (9.3 pg/mg mycelium/min) and the ΔgliK46645 mutant (31.4 pg/mg mycelium/min), strongly suggesting that gliK absence and the presence of elevated ergothioneine levels impede exogenously added gliotoxin efflux. Our results confirm a role for gliK in gliotoxin biosynthesis and reveal new insights into gliotoxin functionality in A. fumigatus.  相似文献   

5.
6.
The potential association between hygienic conditions in the environment of lactating cows and the presence of gliotoxinogenic Aspergillus fumigatus strains was studied. Milk samples (individual cow’s milk [ICM], bulk tank milk [BTM]) from 44 dairy farms were sampled. In ICM samples, eight different species of Aspergillus were identified. A. flavus and A. fumigatus were predominant, with 37.8 % and 26.1 % relative densities, respectively. A. fumigatus strains were isolated from 61.4 % of the BTM samples, and 34 % of these strains were able to produce gliotoxin. Principal component analysis was used to associate the presence of A. fumigatus with some hygienic and sanitary practices. A significant and positive correlation was observed between dry cow therapy and forestripping. The presence of A. fumigatus gliotoxin producers in milk was associated with high somatic cells count (SCC) samples. Good hygienic and sanitary practices were associated with absence of A. fumigatus and relatively low SCCs of <250,000 cells/ml. In general, a high percentage of dairy farms were positive for A. fumigatus in BTM samples. This is the first work that indicates the positive effects of adequate hygienic and sanitary practices in dairy herds on the control of A. fumigatus and related species. By reducing the frequency of Aspergillus spp. in the dairy environment, the risk of farm handlers’ exposure and the risk of intramammary fungal infections would also be reduced.  相似文献   

7.
Genotoxic and cytotoxic compounds were isolated and purified from the culture medium of an indoor air mold, Aspergillus fumigatus. One of these compounds was identified as gliotoxin, a known fungal secondary metabolite. Growth of A. fumigatus and gliotoxin production on some building materials were also studied. Strong growth of the mold and the presence of gliotoxin were detected on spruce wood, gypsum board, and chipboard under saturation conditions.  相似文献   

8.
9.
10.
Three sections of Aspergillus (five species, 21 strains) were classified according to culture medium-dependent and time-dependent secondary metabolite profile-based chemotaxonomy. Secondary metabolites were analysed by liquid chromatography–electrospray ionisation tandem mass spectrometry (LC–ESI-MS–MS) and multivariate statistical methods. From the Aspergillus sections that were cultured on malt extract agar (MEA) and Czapek yeast extract agar (CYA) for 7, 12, and 16 d, Aspergillus sections Fumigati (A. fumigatus), Nigri (A. niger), and Flavi (A. flavus, A. oryzae, and A. sojae) clustered separately on the basis of the results of the secondary metabolite analyses at 16 d regardless of culture medium. Based on orthogonal projection to latent structures discriminant analysis by partial least squares discriminant analysis (PLS-DA), we identified the secondary metabolites that helped differentiate sections between A. fumigatus and Aspergillus section Flavi to be gliotoxin G, fumigatin oxide, fumigatin, pseurotin A or D, fumiquinazoline D, fumagillin, helvolic acid, 1,2-dihydrohelvolic acid, and 5,8-dihydroxy-9,12-octadecadienoic acid (5,8-diHODE). Among these compounds, fumagillin, helvolic acid, and 1,2-dihydrohelvolic acid of A. fumigatus showed antifungal activities against Malassezia furfur, which is lipophilic yeast that causes epidermal skin disorders.  相似文献   

11.
12.
Aspergillus fumigatus is the most common causative agent of mold diseases in humans, giving rise to life-threatening infections in immunocompromised individuals. One of its secreted metabolites is gliotoxin, a toxic antimicrobial agent. The aim of this study was to determine whether the presence of pathogen-associated molecular patterns in broth cultures of A. fumigatus could induce gliotoxin production. Gliotoxin levels were analyzed by ultra-performance liquid chromatography and mass spectrometry. The presence of a bacteria-derived lipopolysaccharide, peptidoglycan, or lipoteichoic acid in the growth media at a concentration of 5 μg/ml increased the gliotoxin concentration in the media by 37%, 65%, and 35%, respectively. The findings reveal a correlation between the concentrations of pathogen-associated molecular patterns and gliotoxin secretion. This shows that there is a yet uncharacterized detection system for such compounds within fungi. Inducing secondary metabolite production by such means in fungi is potentially relevant for drug discovery research. Our results also give a possible explanation for the increased virulence of A. fumigatus during bacterial co-infection, one that is important for the transition from colonization to invasiveness in this pulmonary disease.  相似文献   

13.
The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.  相似文献   

14.
Understanding which fungal factors allow colonization and infection of a human host is critical to lowering the incidence of human mycoses and related mortalities. In the pathogen Aspergillus fumigatus, secondary metabolites, small bioactive molecules produced by many opportunistic fungal pathogens, have important roles in suppressing and providing protection from host defenses. Deletion of LaeA, a global regulator of secondary metabolism in fungi, significantly decreases A. fumigatus virulence, in part owing to loss of gliotoxin and hydrophobin production. In addition to gliotoxin, dihydroxynaphthalene (DHN) melanin and siderophores are other A. fumigatus virulence factors; all three metabolites are derived from hallmark secondary metabolite gene clusters. Many of the gene clusters producing toxin metabolites have yet to be deciphered, and the study of secondary metabolites and their role in the virulence of human pathogens is a nascent field.  相似文献   

15.
Agricultural activities involve daily use of maize silage as feed for livestock, which can be contaminated by mycotoxigenic molds. To evaluate fungal contamination, and the production of mycotoxins in maize silage we propose a multi-disciplinary approach utilizing PCR methods with genes of the aflatoxin (ver-1, omt-1 and apa-2), fumonisin (FUM1) and trichothecene (TRI6) biosynthesis pathways. To detect Aspergillus fumigatus, a 26S/intergenic spacer region of the rDNA complex was amplified. These specific PCR assays allowed three major groups of toxigenic fungi-like aflatoxin-producing Aspergilli, fumonisin and trichothecene-producing Fusaria, and the ubiquitous mold A. fumigatus, to be targeted. A multimycotoxin method is also proposed to simultaneously quantify seven mycotoxins (i.e., aflatoxin B1, citrinin, deoxynivalenol, fumonisin B1, gliotoxin, ochratoxin A, zearalenone) in maize silage by high-performance liquid chromatography coupled to mass spectrometry (HPLC–MS). These microbiological and analytical tools revealed three potentially toxigenic groups of fungi and A. fumigatus grown from mature maize silage (11 month old) that was collected in Normandy (France) and the mycotoxins aflatoxin B1 (7.0–51.3 μg/kg), citrinin (10.1–14.2 μg/kg), deoxynivalenol (128.0–181.0 μg/kg) and gliotoxin (6.6–11.9 μg/kg). Results indicate that the combination of PCR and HPLC–MS can be used to assess fungal quality of maize silages.  相似文献   

16.
We attempted to identify membrane proteins associated with the glycoconjugates and cell wall biosynthesis in the total membrane preparations of Aspergillus fumigatus. The total membrane preparations were first run on 1D gels, and then the stained gels were cut and submitted to in-gel digestion followed by 2D LC-MS/MS and database search. A total of 530 proteins were identified with at least two peptides detected with MS/MS spectra. Seventeen integral membrane proteins were involved in N-, O-glycosylation or GPI anchor biosynthesis. Nine membrane proteins were involved in cell wall biosynthesis. Eight proteins were identified as enzymes involved in sphingolipid synthesis. In addition, the proteins involved in cell wall and ergosterol biosynthesis can potentially be used as antifungal drug targets. Our method, for the first time, clearly provided a global view of the membrane proteins associated with glycoconjugates and cell wall biosynthesis in the total membrane proteome of A. fumigatus.  相似文献   

17.
Gliotoxin, one of the mycotoxins produced by Aspergillus fumigatus, has various, potent bioactivities. However, it has not been considered to be a toxic (or virulence) factor because of its slow production. The aim of the present study was to investigate the effects of aeration on the cytotoxicity of A. fumigatus culture filtrate, and to determine the optimal condition for the rapid production of gliotoxin from this fungus. Fungal culture filtrates were made in three different containers under various conditions of aeration and O2 concentration. These filtrates were compared in terms of their cytotoxicity on murine macrophages and analyzed by gas chromatography. The culture filtrate showed high cytotoxicity when it was made under highly aerated conditions, but it was significantly less cytotoxic when prepared under non-aerated conditions. The cytotoxic activity became evident within 15 h of culture at 20% O2, when the fungus had already started producing gliotoxin. The culture filtrates also contained some other as yet unidentified substances that might also to some extent contribute to the cytotoxicity. In light of these results, the authors propose that a highly aerated condition is responsible for the rapid production of gliotoxin, and that gliotoxin might play an important role in the respiratory infection by A. fumigatus, with other toxic substances acting additively or synergistically.  相似文献   

18.
In microbiology, gene disruption and subsequent experiments often center on phenotypic changes caused by one class of specialized metabolites (quorum sensors, virulence factors, or natural products), disregarding global downstream metabolic effects. With the recent development of mass spectrometry-based methods and technologies for microbial metabolomics investigations, it is now possible to visualize global production of diverse classes of microbial specialized metabolites simultaneously. Using imaging mass spectrometry (IMS) applied to the analysis of microbiology experiments, we can observe the effects of mutations, knockouts, insertions, and complementation on the interactive metabolome. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the impact on specialized metabolite production of a transposon insertion into a Pseudomonas aeruginosa phenazine biosynthetic gene, phzF2. The disruption of phenazine biosynthesis led to broad changes in specialized metabolite production, including loss of pyoverdine production. This shift in specialized metabolite production significantly alters the metabolic outcome of an interaction with Aspergillus fumigatus by influencing triacetylfusarinine production.  相似文献   

19.
Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.  相似文献   

20.
Theabrownins (TB) are water-soluble phenolic compounds associated with the various health benefits of Pu-erh tea, a post-fermented Chinese dark tea. This work reports on the production of theabrownins from infusions of sun-dried green tea leaves using a pure culture of Aspergillus fumigatus isolated from a solid-state Pu-erh tea fermentation. A theabrownins yield of 158 g kg?1 sun-dried green tea leaves was obtained in 6 days at 45 °C in an aerobic fermentation. In a 2 l fermenter, the yield of theabrownins was 151 g kg?1 sun-dried green tea leaves in 48 h of aerobic culture (45 °C, 1 vvm aeration rate, 250 rpm agitation speed). Extracellular polyphenol oxidase and peroxidase of A. fumigatus contributed to this bioconversion. Repeated batch fermentation process was used for producing theabrownins but was less productive than the batch process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号