首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metarhizium robertsii, a butyltin-resistant filamentous fungus, can rapid and complete biodegradation of di- (DBT) and tributyltin (TBT) under conditions of intensive aeration and ascorbic acid supplementation. In this paper, lipidomic investigations were performed to find the membrane adaptations necessary for effective butyltins degradation. HPLC-MS/MS analysis showed that the phospholipid profile was greatly modified during M. robertsii batch cultivation (pO2?≥?20%), contributing to increased membrane fluidity and facilitated mass transfer, which could enhance butyltins biodegradation. Intensified biosynthesis of phospholipids, sphingolipids and ergosterol by the mycelia exposed to butyltins was noted. DIOC6(3) fluorescence intensity for TBT-treated mycelium increased 9-fold pointing to membrane hyperpolarization. Fluorescent studies showed improved membrane rigidity and integrity in response to butyltins presence. Vitamin C supplementation restored membrane composition and dynamic properties, followed by supposed acceleration of transport of monobutyltin and its biodegradation thus protecting the M. robertsii cells against oxidative and nitrosative stress.  相似文献   

2.
3.
4.
Temperature extremes are an important adverse factor limiting the effectiveness of microbial pest control agents. They reduce virulence and persistence in the plant root-colonizing insect pathogen Metarhizium robertsii. Small heat shock proteins have been shown to confer thermotolerance in many organisms. In this study, we report on the cloning and characterization of a small heat shock protein gene hsp25 from M. robertsii. hsp25 expression was upregulated when the fungus was grown at extreme temperatures (4, 35, and 42 °C) or in the presence of oxidative or osmotic agents. Expression of hsp25 in Escherichia coli increased bacterial thermotolerance confirming that hsp25 encodes a functional heat shock protein. Overexpressing hsp25 in M. robertsii increased fungal growth under heat stress either in nutrient-rich medium or on locust wings and enhanced the tolerance of heat shock-treated conidia to osmotic stress. In addition, overexpression of hsp25 increased the persistence of M. robertsii in rhizospheric soils in outdoor microcosms, though it did not affect survival in bulk soil, indicating that M. robertsii's survival in soil is dependent on interactions with plant roots.  相似文献   

5.
Conidia from Metarhizium spp. are used for integrated pest control; however, environmental factors diminish the effectivity of these programs. Several approaches tried to improve conidia resistance to overcome this limitation, although little is known about the mechanisms involved in this effect. Here we measured the activity of antioxidant enzymes and conidia virulence, comparing the proteomic profiles of Metarhiziumlepidiotae CP-OAX conidia produced under normal (21% O2) and high oxygen atmospheres (pulses with 30% O2). We detected a higher virulence against Tenebrio molitor larvae, in addition to an increase in ultraviolet light tolerance in conidia produced under 30% O2, which correlates with increased glutathione reductase activity. Two-dimensional gel electrophoresis (2D SDS–PAGE) of proteins extracted in conidia harvested from both experimental conditions revealed a group of proteins that was observed only in conidia from oxidant atmospheres. Some of those proteins were directly involved in oxidative stress responses, whereas others were involved in conidial virulence, thermo-tolerance, and the central metabolism. Thus, a high atmospheric oxygen concentration (30%) activates antioxidant defence and general stress response mechanisms involved in conidia resistance to adverse environmental factors, which can ultimately translate into higher effectivity for the use of entomopathogenic fungi conidia in pest control.  相似文献   

6.
Thermotoga maritima (T. maritima) is a typical thermophile, and its proteome response to environmental temperature changes has yet to be explored. This study aims to uncover the temperature-dependent proteins of T. maritima using comparative proteomic approach. T. maritima was cultured under four temperatures, 60°C, 70°C, 80°C and 90°C, and the bacterial proteins were extracted and electrophoresed in two-dimensional mode. After analysis of gel images, a total of 224 spots, either cytoplasm or membrane, were defined as temperature-dependent. Of these spots, 75 unique bacterial proteins were identified using MALDI TOF/TOF MS. As is well known, the chaperone proteins such as heat shock protein 60 and elongation factor Tu, were up-regulated in abundance due to increased temperature. However, several temperature-dependent proteins of T. maritima responded very differently when compared to responses of the thermophile T. tengcongensis. Intriguingly, a number of proteins involved in central carbohydrate metabolism were significantly up-regulated at higher temperature. Their corresponding mRNA levels were elevated accordingly. The increase in abundance of several key enzymes indicates that a number of central carbohydrate metabolism pathways of T. maritima are activated at higher temperatures.  相似文献   

7.
8.
《Fungal biology》2020,124(9):766-780
Fungi of the genus Paracoccidioides are the etiological agents of Paracoccidioidomycosis (PCM), the most prevalent mycosis in Latin America. Paracoccidioidomycosis infection is acquired by inhalation of Paracoccidioides conidia, which have first contact with the lungs and can subsequently spread to other organs/tissues. Until now, there have been no proteomic studies focusing on this infectious particle of Paracoccidioides. In order to identify the Paracoccidioides lutzii conidia proteome, conidia were produced and purified. Proteins were characterized by use of the nanoUPLC-MSE approach. The strategy allowed us to identify a total of 242 proteins in P. lutzii conidia. In the conidia proteome, proteins were classified in functional categories such as protein synthesis, energy production, metabolism, cellular defense/virulence processes, as well as other processes that can be important for conidia survival. Through this analysis, a pool of ribosomal proteins was identified, which may be important for the initial processes of dimorphic transition. In addition, molecules related to energetic and metabolic processes were identified, suggesting a possible basal metabolism during this form of resistance of the fungus. In addition, adhesins and virulence factors were identified in the P. lutzii conidia proteome. Our results demonstrate the potential role that these molecules can play during early cell–host interaction processes, as well as the way in which these molecules are involved in environmental survival during this form of propagation.  相似文献   

9.
10.
The lacy crust bryozoan Membranipora membranacea frequently colonizes the late harvested blades of aquacultured Saccharina japonica. From proteomic profiles of S. japonica, 145 and 91 protein spots were detected from colonized and healthy tissues, respectively. Among them, 69 and 32 spots were significantly up- and downregulated, respectively, in expression level upon colonization. In M. membranacea colonized tissue, tripartite motif protein 2-like, microcompartments protein, carboxysome peptide shell peptide, trypsin precursor-like, transmembrane protein, two-component response regulator PilR, spermine/spermidine synthase, vanadium-dependent bromoperoxidase, peptide chain release factor 1, interaptin, 50S ribosomal protein L1P, plus agglutinin and leucine-rich repeat protein were upregulated, whereas protoporphyrinogen oxidase, PIH1 domain-containing protein 2, GTPase-activating protein alpha, cytoplasmic threonyl-tRNA synthetase, flavanone 3-hydroxylase, and eukaryotic translation initiation factor 3 proteins were downregulated. Moreover, DEAD/DEAH box helicase, glutamyl-tRNA reductase, and chaperone DnaJ protein were newly expressed in the colonized tissue. Most of the up- and downregulated proteins are known to be related to stress control, defense mechanisms, signal transduction, photosynthesis, protein metabolism, and the cytoskeleton.  相似文献   

11.
This study was designed to identify physiological responses and differential proteomic responses to salinity stress in roots of a salt-tolerant grass species, seashore paspalum (Paspalum vaginatum), and a salt-sensitive grass species, centipedegrass (Eremochloa ophiuroides). Plants of both species were exposed to salinity stress by watering the soil with 300 mM NaCl solution for 20 d in a growth chamber. The 2-DE analysis revealed that the abundance of 8 protein spots significantly increased and 14 significantly decreased in seashore paspalum, while 19 and 16 protein spots exhibited increase and decrease in abundance in centipedegrass, respectively. Eight protein spots that exhibited enhanced abundance in seashore paspalum under salinity stress were subjected to mass spectrometry analysis. Seven protein spots were successfully identified, they are peroxidase (POD, 2.36-fold), cytoplasmic malate dehydrogenase (cMDH, 5.84-fold), asorbate peroxidase (APX, 4.03-fold), two mitochondrial ATPSδ chain (2.26-fold and 4.78-fold), hypothetical protein LOC100274119 (5.01-fold) and flavoprotein wrbA (2.20-fold), respectively. Immunblotting analysis indicated that POD and ATPSδ chain were significantly up-regulated in seashore paspalum at 20 d of salinity treatment while almost no expression in both control and salt treatment of centipedegrass. These results indicated that the superior salinity tolerance in seashore paspalum, compared to centipedegrass, could be associated with a high abundance of proteins involved in ROS detoxification and energy metabolism.  相似文献   

12.
13.
Salt stress is a major abiotic stress that limits crop productivity in many regions of the world. A comparative proteomic approach to identify salt stress-responsive proteins and to understand the molecular mechanisms was carried out in the woody halophyte Kandelia candel. Four-leaf-old K. candel seedlings were exposed to 150 (control), 300, 450, and 600 mM NaCl for 3 days. Proteins extracted from the leaves of K. candel seedlings were separated by two-dimensional gel electrophoresis (2-DE). More than 900 protein spots were detected on each gel, and 53 differentially expressed protein spots were located with at least two-fold differences in abundance on 2-DE maps, of which 48 were identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). The results showed that K. candel could withstand up to 450 mM NaCl stress by up-regulating proteins that are mainly involved in photosynthesis, respiration and energy metabolism, Na+ compartmentalization, protein folding and assembly, and signal transduction. Physiological data, including superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities, hydrogen peroxide (H2O2) and superoxide anion radicals (O2 ) contents, as well as Na+ content and K+/Na+ ratios all correlated well with our proteomic results. This study provides new global insights into woody halophyte salt stress responses. Identification of differentially expressed proteins promotes better understanding of the molecular basis for salt stress reduction in K. candel.  相似文献   

14.
Salt stress limits plant growth and crop productivity and is an increasing threat to agriculture worldwide. In this study, proteomic and physiological responses of Brassica napus leaves under salt stress were investigated. Seedlings under salt treatment showed growth inhibition and photosynthesis reduction. A comparative proteomic analysis of seedling leaves exposed to 200 mM NaCl for 24 h, 48 h and 72 h was conducted. Forty-four protein spots were differentially accumulated upon NaCl treatment and 42 of them were identified, including several novel salt-responsive proteins. To determine the functional roles of these proteins in salt adaptation, their dynamic changes in abundance were analyzed. The results suggested that the up-accumulated proteins, which were associated with protein metabolism, damage repair and defense response, might contribute to the alleviation of the deleterious effect of salt stress on chlorophyll biosynthesis, photosynthesis, energy synthesis and respiration in Brassica napus leaves. This study will lead to a better understanding of the molecular basis of salt stress adaptation in Brassica napus and provides a basis for genetic engineering of plants with improved salt tolerance in the future.  相似文献   

15.
16.
17.
Proteins extracted with 6 M guanidine at 90 degrees C from conidia (asexual spores) of Neurospora crassa contained ca. 25% more total protein thiol and a fivefold-higher content of disulfide bonds than proteins extracted from mycelia, as determined by labeling with iodo[14C]acetic acid. The total thiol content was 88 mumol/g of protein in conidia and 70 mumol/g of protein in mycelia. The level of protein disulfide was 18.5 mumol/g of protein in conidia and 3.5 mumol/g of protein in mycelia, by the iodo[14C]acetic acid labeling method. Confirmatory results were obtained with 5'5-dithio-bis-2-nitrobenzoic acid titration of protein thiol groups in 1% sodium dodecyl sulfate as well as by amino acid analysis of cysteic acid derivatives. Buffer-extracted proteins from conidia, but not mycelia, were found to contain enriched levels of protein thiols and disulfides per gram of protein as compared with guanidine hydrochloride extracts. It was demonstrated that the high disulfide content of crude conidial extracts was not due to measurable levels of mixed disulfides formed between protein sulfhydryl groups and cysteine. During germination of the conidia, the high disulfide levels of the conidial proteins remained constant. These data suggest that, unlike the disulfides of glutathione, the bulk of conidial protein disulfides were not reduced, excreted, or extensively degraded during germination.  相似文献   

18.

Background

The recent outbreak of severe infections with Shiga toxin (Stx) producing Escherichia coli (STEC) serotype O104:H4 highlights the need to understand horizontal gene transfer among E. coli strains, identify novel virulence factors and elucidate their pathogenesis. Quantitative shotgun proteomics can contribute to such objectives, allowing insights into the part of the genome translated into proteins and the connectivity of biochemical pathways and higher order assemblies of proteins at the subcellular level.

Methodology/Principal Findings

We examined protein profiles in cell lysate fractions of STEC strain 86-24 (serotype O157:H7), following growth in cell culture or bacterial isolation from intestines of infected piglets, in the context of functionally and structurally characterized biochemical pathways of E. coli. Protein solubilization in the presence of Triton X-100, EDTA and high salt was followed by size exclusion chromatography into the approximate Mr ranges greater than 280 kDa, 280-80 kDa and 80-10 kDa. Peptide mixtures resulting from these and the insoluble fraction were analyzed by quantitative 2D-LC-nESI-MS/MS. Of the 2521 proteins identified at a 1% false discovery rate, representing 47% of all predicted E. coli O157:H7 gene products, the majority of integral membrane proteins were enriched in the high Mr fraction. Hundreds of proteins were enriched in a Mr range higher than that predicted for a monomer supporting their participation in protein complexes. The insoluble STEC fraction revealed enrichment of aggregation-prone proteins, including many that are part of large structure/function entities such as the ribosome, cytoskeleton and O-antigen biosynthesis cluster.

Significance

Nearly all E. coli O157:H7 proteins encoded by prophage regions were expressed at low abundance levels or not detected. Comparative quantitative analyses of proteins from distinct cell lysate fractions allowed us to associate uncharacterized proteins with membrane attachment, potential participation in stable protein complexes, and susceptibility to aggregation as part of larger structural assemblies.  相似文献   

19.
Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa) germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.  相似文献   

20.
Urogenital schistosomiasis remains a major public health concern worldwide. In response to egg deposition, the host bladder undergoes gross and molecular morphological changes relevant for disease manifestation. However, limited mechanistic studies to date imply that the molecular mechanisms underlying pathology are not well-defined. We leveraged a mouse model of urogenital schistosomiasis to perform for the first time, proteome profiling of the early molecular events that occur in the bladder after exposure to S. haematobium eggs, and to elucidate the protein pathways involved in urogenital schistosomiasis-induced pathology. Purified S. haematobium eggs or control vehicle were microinjected into the bladder walls of mice. Mice were sacrificed seven days post-injection and bladder proteins isolated and processed for proteome profiling using mass spectrometry. We demonstrate that biological processes including carcinogenesis, immune and inflammatory responses, increased protein translation or turnover, oxidative stress responses, reduced cell adhesion and epithelial barrier integrity, and increased glucose metabolism were significantly enriched in S. haematobium infection. S. haematobium egg deposition in the bladder results in significant changes in proteins and pathways that play a role in pathology. Our findings highlight the potential bladder protein indicators for host-parasite interplay and provide new insights into the complex dynamics of pathology and characteristic bladder tissue changes in urogenital schistosomiasis. The findings will be relevant for development of improved interventions for disease control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号