首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Objectives

To demonstrate biotransformation of toxic Cr(VI) ions into Cr2O3 nanoparticles by the yeast Schwanniomyces occidentalis.

Results

Reaction mixtures containing S. occidentalis NCIM 3459 and Cr(VI) ions that were initially yellow turned green after 48 h incubation. The coloration was due to the synthesis of chromium (III) oxide nanoparticles (Cr2O3NPs). UV–Visible spectra of the reaction mixtures showed peaks at 445 and 600 nm indicating 4A2g → 4T1g and 4A2g → 4T2g transitions in Cr2O3, respectively. FTIR profiles suggested the involvement of carboxyl and amide groups in nanoparticle synthesis and stabilization. The Cr2O3NPs ranged between 10 and 60 nm. Their crystalline nature was evident from the selective area electron diffraction and X-ray diffraction patterns. Energy dispersive spectra confirmed the chemical composition of the nanoparticles. These biogenic nanoparticles could find applications in different fields.

Conclusions

S. occidentalis mediated biotransformation of toxic Cr(VI) ions into crystalline extracellular Cr2O3NPs under benign conditions.
  相似文献   

2.
Rice husks (RHs) was used as a substrate for biosynthesis of high-value Silica nanoparticles (SiO2NPs). An isolate of Trichoderma harzianum MF780864 (T. harzianum) was isolated and identified based on the Internal Transcribed Spacers (ITS) sequences; it showed the potentiality to induce SiO2NPs in the process of RHs biotransformation. SiO2NPs were produced extracellularly and their size was of about 89 nm. SiO2NPs characterized by oval, rod and cubical particles by using Transmission Electron Microscope (TEM).The Fourier transform infrared spectroscopy (FTIR) confirmed the presence of various functional groups of biomolecules and capping protein, encapsulating SiO2NPs. Water and fish samples were collected from private fish farms in El-Sharkia Governorate, Egypt. Lead (Pb) was detected from water and fish samples at its highest concentration at about 0.088 mg/L. The adsorption capacity of Pb by SiO2NPs was evaluated by testing different concentrations of SiO2NPs viz. 1, 2, and 3 mg/L, wherein 1 mg/L revealed the highest Pb adsorption efficiency. Within laboratory trials, the results indicated that highest Pb adsorption efficiency revealed through the increasing of SiO2NPs concentrations until 120 h. In vivo trial that lasted for 8 weeks, Nile tilapia (Oreochromis niloticus) (29.78 ± 0.36 g body weight) supplemented with 0.088 mg/L Pb was divided into four experimental groups having three replicates (15 fish/replicate; 45 fish/group). The results showed that SiO2NPs supplementation through water revealed significant increase in growth and hematological parameters of O. niloticus. Moreover, enhancement of antioxidant capacity (TAC), and immune related gene expression of IL-1β were increased in the presence of SiO2NPs compared with the groups of Pb exposure. Moreover, Pb residue level in fish muscles was noticeably decreased in the SiO2NPs treated groups. Thus, this research opens up other possibilities in the field of using SiO2NPs as a lead adsorbent for water bioremediation.  相似文献   

3.
We evaluated the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) preilluminated with ultraviolet light on Escherichia coli and Bacillus subtilis. The experiments were conducted using three different types of light: visible, Ultraviolet A (UVA, 315–400 nm), and Ultraviolet B (UVB, 280–315 nm). The bacteria were exposed to NPs, either as liquid suspensions for growth inhibition assays or on agar plates for colony forming unit (CFU) assays. We found that the ZnO NPs were more toxic when preilluminated with UVA or UVB light than with visible light in both growth inhibition and CFU assays. TiO2 NPs were not toxic to the bacteria under UVA or UVB preillumination conditions. The photo-dissolution of ZnO NPs increased with UV preillumination, which could explain the observed toxicity of ZnO NPs. We detected oxidative stress elicited by photoactive nanoparticles by measuring superoxide dismutase activity. The results of this study show that the toxicity of photoactive nanoparticles can be increased by UV preillumination by dissolution of toxic ions, which suggests the potential for preillumination-dependent toxicity of nanoparticles on soil environments in low light or darkness.  相似文献   

4.
The present study is the first report on the ability of Geobacter sulfurreducens PCA to reduce Pd(II) and produce Pd(0) nano-catalyst, using acetate as electron donor at neutral pH (7.0?±?0.1) and 30 °C. The microbial production of Pd(0) nanoparticles (NPs) was greatly enhanced by the presence of the redox mediator, anthraquinone-2,6-disulfonate (AQDS) when compared with controls lacking AQDS and cell-free controls. A cell dry weight (CDW) concentration of 800 mg/L provided a larger surface area for Pd(0) NPs deposition than a CDW concentration of 400 mg/L. Sample analysis by transmission electron microscopy revealed the formation of extracellular Pd(0) NPs ranging from 5 to 15 nm and X-ray diffraction confirmed the Pd(0) nature of the nano-catalyst produced. The present findings open the possibility for a new alternative to synthesize Pd(0) nano-catalyst and the potential application for microbial metal recovery from metal-containing waste streams.  相似文献   

5.
Nanoparticles (NPs) have extensive industrial, biotechnological, and biomedical/pharmaceutical applications, leading to concerns over health risks to humans and biota. Among various types of nanoparticles, silica nanoparticles (SiO2 NPs) have become popular as nanostructuring, drug delivery, and optical imaging agents. SiO2 NPs are highly stable and could bioaccumulate in the environment. Although toxicity studies of SiO2 NPs to human and mammalian cells have been reported, their effects on aquatic biota, especially fish, have not been significantly studied. Twelve adherent fish cell lines derived from six species (rainbow trout, fathead minnow, zebrafish, goldfish, haddock, and American eel) were used to comparatively evaluate viability of cells by measuring metabolic impairment using Alamar Blue. Toxicity of SiO2 NPs appeared to be size-, time-, temperature-, and dose-dependent as well as tissue-specific. However, dosages greater than 100 μg/mL were needed to achieve 24 h EC50 values (effective concentrations needed to reduce cell viability by 50%). Smaller SiO2 NPs (16 nm) were relatively more toxic than larger sized ones (24 and 44 nm) and external lining epithelial tissue (skin, gills)-derived cells were more sensitive than cells derived from internal tissues (liver, brain, intestine, gonads) or embryos. Higher EC50 values were achieved when toxicity assessment was performed at higher incubation temperatures. These findings are in overall agreement with similar human and mouse cell studies reported to date. Thus, fish cell lines could be valuable for screening emerging contaminants in aquatic environments including NPs through rapid high-throughput cytotoxicity bioassays.  相似文献   

6.
Zinc oxide nanoparticles (ZnO NPs) can be ingested directly when used in food, food packaging, drug delivery, and cosmetics. This study evaluated the cellular effects of ZnO NPs (50 and 100 nm diameter particle sizes) on the function of osteoblastic MC3T3-E1 cells. ZnO NPs showed cytotoxicity at concentrations of above 50 μg/ml, and there was no significant effect of the size on the cytotoxicity of ZnO NPs. Within the testing concentrations of 0.01~1 μg/ml, which did not cause a marked drop in cell viability, ZnO NPs (0.1 μg/ml) caused a significant elevation of alkaline phosphatase activity, collagen synthesis, mineralization, and osteocalcin content in the cells (P?<?0.05). Moreover, pretreatment with ZnO NPs (0.01~1 μg/ml) significantly reduced antimycin A-induced cell damage by preventing mitochondrial membrane potential dissipation, complex IV inactivation, and ATP loss. Measurement of reactive oxygen species (ROS) indicated decrease in ROS level upon exposure to ZnO nanoparticles (0.01 μg/ml). Hence, our study indicated that ZnO nanoparticles can have protective effects on osteoblasts at low concentrations where there are little or no observable cytotoxic effects.  相似文献   

7.
8.
Optical absorption and fluorescence emission techniques were employed to investigate the size effects of silver nanoparticles (Ag NPs) on 1,4-dihydroxy-3-methylanthracene-9,10-dione (DHMAD). Silver nanoparticles of different sizes were prepared by Creighton method under microwave irradiation. The prepared Ag NPs show the surface plasmon band around 400 nm. Fluorescence quenching of DHMAD by Ag NPs was found to increase with an increase in the size of Ag NPs. The fluorescence quenching is explained by resonant energy transfer mechanism between DHMAD and Ag NPs, orientation of DHMAD on silver nanoparticles through chemisorptions. The Stern–Volmer quenching constant and Benesi–Hildebrand association constant for the above system were calculated. DFT calculations were also performed to study the ground and excited state behavior of DHMAD and DHMAD + Ag system.  相似文献   

9.
Biotransformation of 1,3-dichloro-2-propanol (DCP) to epichlorohydrin (ECH) by the whole cells of recombinant Escherichia coli expressing halohydrin dehalogenase was limited by product inhibition. To solve this problem and improve the ECH yield, a biotransformation strategy using resin-based in situ product removal (ISPR) was investigated. Seven macroporous resins were examined to adsorb ECH: resin HZD-9 was the best. When 10 % (w/v) HZD-9 was added to batch biotransformation, 53.3 mM ECH was obtained with a molar yield of 88.3 %. The supplement of the HZD-9 increased the ECH volumetric productivity from 0.5 to 2.8 mmol/l min compared to without addition of resin. In fed-batch biotransformation, this approach increased ECH from 31 to 87 mM. These results provide a promising basis for the biosynthesis of ECH.  相似文献   

10.
Modeling of optical properties of spherical core–shell gold–silver and silver–gold nanoparticles (NPs) was carried out based on extended Mie theory for radiation wavelengths in the range 300?≤?λ?≤?650 nm. Efficiency factors of absorption, scattering, and extinction of radiation by core–shell NPs in the range of the radii 5–100 nm and in the range of shell thicknesses 0–40 nm were calculated. Results show the nonlinear dependences of optical properties of core–shell gold–silver and silver–gold nanoparticles on radiation wavelengths, core radii, and shell thicknesses. These results can be applied for photonic technologies of nanoparticles.  相似文献   

11.
Copper oxide (CuO) nanoparticles (NPs) synthesized through co-precipitation method were employed in MS media during in vitro culture of Stevia rebaudiana. Physiological characteristics, production of steviol glycosides, and antioxidative parameters were investigated in regenerated plants. CuO NPs had crystalline monoclinic cubic cuprous oxides with average size 47 nm. The NPs were applied at 0, 0.1, 1.0, 10, 100 and 1000 mg/L in MS media for direct organogenesis of S. rebaudiana from nodal segments. Shoot organogenesis was found highest (88.5%) at 10 mg/L CuO and average shoot length, mean number of shoot per explant, and fresh weight were also found significantly higher at the same concentration. High performance liquid chromatography (HPLC) illustrated significant rise of bioactive major steviol glycosides (rebaudioside A and stevioside) at 10 mg/L CuO NPs in MS media. The oxidative stress produced by CuO nanoparticles on S. rebaudiana was affirmed by antioxidant activities i.e. total antioxidant activity (TAC), total reducing power (TRP) and 2,2-diphenyl-1-picryl hydrazyl (DPPH)-free radical scavenging activity. The oxidative stress generated by NPs involved production of antioxidative molecules total phenolic content (TPC), total flavonoid content (TFC) depending on NPs concentration. The study concludes that copper oxide nanoparticles functions as a stimulator of bioactive components productions, and can be employed in in vitro batch cultures.  相似文献   

12.
A computational method for constructing and evaluating the dynamic behaviour of functionalised hexagonal mesoporous silica (HMS) MCM-41 models is reported. HMS with three pore diameters (1.7, 2.2 and 2.9 nm) were prepared, and, from these, two series of derivative structures were constructed – one with 1,3-diphenylpropyl (DPP) tethers and the other with smaller dimethylsilyl (DMS) tethers attached to the mesopores' internal surfaces. Comparison with experimental data shows that simulation results correctly predict the maximum tether density that can be achieved for each tether and each pore diameter. For the smaller pore models, the extent of DPP functionalisation that can be achieved is limited by the available pore volume. However, for the larger pore model, the extent of functionalisation is limited by access to potentially reactive sites on the pore surface. The dynamic behaviour of the models was investigated over a range of temperatures (240–648 K). At lower temperatures ( < 400 K), the mobility of DPP tethers in the 2.9 nm model is actually less than that observed in either the 2.2 nm model or the 1.7 nm model due to the extensive non-bonded interactions that are able to develop between tethers and the silica surface at this diameter. At higher temperatures, the free ends of these tethers break away from the surface, extend further into the pore space and the DPP mobility in the 2.9 nm model is higher than in the smaller pore systems.  相似文献   

13.
Graphene-based silver nanoparticles (Ag NPs–GE) material has been developed and demonstrated antibacterial effect against Escherichia coli and Pseudomonas aeruginosa. In this study, the antibacterial activity and mechanism on P. aeruginosa were investigated. The experiments results showed the minimum bactericidal concentration of Ag NPs–GE to P. aeruginosa is 20 μg/ml. When P. aeruginosa were exposed to 20 μg/ml Ag NPs–GE for 1 h, the cell wall was breakdown. In order to study the mechanism of antibacterial effect of Ag NPs–GE, two-dimensional electrophoresis was carried out to compare the protein expressional profiles of P. aeruginosa exposed to 5 μg/ml Ag NPs–GE or 5 μg/ml AgNO3 with the untreated bacteria. Identification of differentially expressed protein was performed by MALDI–TOF/TOF MS. The change of proteomic profile induced by Ag NPs–GE was distinct from that induced by AgNO3. Seven identified proteins were found induced and nine proteins were suppressed by Ag NPs–GE. Five identified proteins were found induced and twenty proteins were suppressed by AgNO3. In addition, either Ag NPs–GE or AgNO3 suppressed the expression of eight proteins, amidotransferase, 30S ribosomal protein S6, bifunctional proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase, arginyl-tRNA synthetase, nitroreductase, acetolactate synthase 3, methionyl-tRNA synthetase and periplasmic tail-specific protease. Furthermore, gene ontology analysis and KEGG pathway analysis were used to characterize the functions of those proteins.  相似文献   

14.
Silver nanoparticles (Ag NPs) of different sizes have been prepared by Lee and Meisel’s method using trisodium citrate as reducing agent under ultra sonication. Optical absorption and fluorescence emission techniques were employed to investigate the interaction of 1,4-dihydroxy-2,3-dimethyl anthracene-9,10-dione (DHDMAD) with silver nanoparticles. In fluorescence spectroscopic study, we used the DHDMAD and Ag NPs as component molecules for construction of Förster Resonance Energy Transfer (FRET), whereas DHDMAD serve as donor and Ag NPs as acceptor. The surface plasmon resonance (SPR) peak of the prepared silver colloidal solution was observed from 419 nm to 437 nm. The synthesized silver nanoparticles at different heating time intervals were spherical in shape about the size of 25 nm and 55 nm. The fluorescence interaction between silver nanoparticles and DHDMAD confirms the FRET mechanism. According to Förster theory, the distance between silver nanoparticles and DHDMAD and the critical energy transfer distance were calculated and it is increase with heating time.  相似文献   

15.
We investigated the effect of SiO2 spacer layer thickness between the textured silicon surface and silver nanoparticles (Ag NPs) on solar cell performance using quantum efficiency analysis. Separation of Ag NPs from high index silicon with SiO2 layer led to modified absorption and scattering cross-sections due to graded refractive index medium. The forward scattering from Ag NPs is very sensitive to SiO2 layer thickness in plasmonic silicon cell performance due to the evanescent character of generated near-fields around the NPs. With the optimized ~30–40 nm SiO2 spacer layer, we observed an enhancement of solar cell efficiency from ~8.7 to ~10 %, which is due to the photocurrent enhancement in the off-resonance surface plasmon region. We also estimated minority carrier diffusion lengths (L eff) from internal quantum efficiency data, which are also sensitive to SiO2 spacer layer thickness. We observed that the L eff values are enhanced from ~356 to ~420 μm after placing Ag NPs on ~40 nm spacer layer due to improved forward (angular) scattering of light from the Ag NPs into silicon.  相似文献   

16.
Kinetics, biodistribution, and histological studies were performed to evaluate the particle‐size effects on the distribution of 15 nm and 50 nm PEG‐coated colloidal gold (CG) particles and 160 nm silica/gold nanoshells (NSs) in rats and rabbits. The above nanoparticles (NPs) were used as a model because of their importance for current biomedical applications such as photothermal therapy, optical coherence tomography, and resonance‐scattering imaging. The dynamics of NPs circulation in vivo was evaluated after intravenous administration of 15 nm CG NPs to rabbit, and the maximal concentrations of gold were observed 15–30 min after injection. Rats were injected in the tail vein with PEG‐coated NPs (about 0.3 mg Au/kg rats). 24 h after injection, the accumulation of gold in different organs and blood was determined by atomic absorption spectroscopy. In accordance with the published reports, we observed 15 nm particles in all organs with rather smooth distribution over liver, spleen and blood. By contrast, the larger NSs were accumulated mainly in the liver and spleen. For rabbits, the biodistribution was similar (72 h after intravenous injection). We report also preliminary data on the light microscopy and TEM histological examination that allows evaluation of the changes in biotissues after gold NPs treatment. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Iron oxide nanoparticles offer unique possibilities due to the change in their physico-chemical parameters when synthesized on the nanoscale (10?9 m) compared to their bulk forms. While novel uses exist for these materials when synthesized as nanoparticles, their unintended effects on the human body and specifically during pregnancy remain ill defined. In this study, an iron oxide nanoparticle, α-Fe2O3, was employed and the potential toxicity due to exposure was assessed in the widely used model human placental cell line BeWo b30. These cells were grown as epithelia, and subsequently assessed for their epithelial integrity, reactive oxygen species production and cellular viability, ultrastructural and morphological disruption, and genotoxicity as a result of exposure to α-Fe2O3 nanoparticles. Transepithelial electrical resistance indicated that exposure to the large (50 and 78 nm), but not small (15 nm) diameter particles of α-Fe2O3 nanomaterial resulted in leakiness of the epithelium. Exposure to the large diameters of 50 and 78 nm resulted in increases in cell death and reactive oxygen species. Disruption of junctional integrity as monitored by immunolocalization of the tight junction protein ZO-1 was found to occur as a consequence of exposure to large diameter NPs. It was found that there was reduction in the number of microvilli responsible for increased surface area for nutrient absorption after exposing the epithelia to large diameter NPs. Finally, genotoxicity as assessed by DNA microarray and confirmed by QPCR indicated that the large diameter particles (78 nm) induce apoptosis in these cells. These data indicate that large (50 and 78 nm), but not small (15 nm) α-Fe2O3 nanoparticles disrupt the barrier function of this epithelium as assessed by in vitro analysis.  相似文献   

18.
Grasserie, a polyorganotrophic disease caused by Bombyx mori nucleopolyhedrovirus (BmNPV), accounts for lethal infection to fifth instar silkworm larvae. It was found that nanoparticle (NP)-induced morphological transformation of BmNPV polyhedra could reduce the infectivity of BmNPV both in cell line and in silkworm larvae. Initially, 11 NPs were screened for evaluation of their nature of interaction with polyhedra surface through scanning electron microscopy. Amongst these NPs, lipophilically coated silica nanoparticle (SNPL), alumina nanoparticles in the hexagonal close-packed α structure and aspartate capped gold nanoparticle transformed polyhedra were tested for their infectivity in B. mori cell line using cytopathic effect and plaque reduction assay. SNPL was evaluated for its bio-efficacy in fifth instar silkworm larvae. The study of polyhedra morphology as a function of NP concentration showed severe ‘roughening’ of the polyhedra with replacement of the regular facets by a large number of irregular ones by SNPL, and this caused transition of highly infectious polyhedra into a nearly spherical, non-infectious structure. A moderate polyhedra roughening was observed for alumina NPs, and no roughening was noticed for gold NPs. The morphological changes could be correlated with reduction of virus-induced cytopathic effect and plaque formation, and increased survival rate of SNPL transformed polyhedra infected silkworm larvae to 70.09?±?6.61 % after 96 h. In this group, 61.04?±?8.03 % larvae formed normal cocoons from which moths eclosed, laid eggs and larvae emerged. This study could lead to open up newer pathways for designing nano pharmaceuticals to combat other viral diseases.  相似文献   

19.

Objective

Thialkalivibrio versutus D301 cells were immobilized on Fe3O4 nanoparticles (NPs) synthesized by an improved chemical coprecipitation method and modified with 3-aminopropyltriethoxysilane (APTES), then the immobilized cells were used in sulfur oxidation.

Results

The prepared Fe3O4–APTES NPs had a narrow size distribution (10 ± 2 nm) and were superparamagnetic, with a saturation magnetization of 60.69 emu/g. Immobilized cells had a saturation magnetization of 34.95 emu/g and retained superparamagnetism. The optimum conditions for cell immobilization were obtained at pH 9.5 and 1 M Na+. The immobilization capacity of Fe3O4–APTES NPs was 7.15 g DCW/g-NPs that was 2.3-fold higher than that of Fe3O4 NPs. The desulfurization efficiency of the immobilized cells was close to 100%, having the same sulfur oxidation capacity as free cells. Further, the immobilized cells could be reused at least eight times, retaining more than 85% of their desulfurization efficiency.

Conclusion

Immobilization of cells with the modified magnetic NPs efficiently increased cell controllability, have no effect on their desulfurization activity and could be effectively used in large-scale industrial applications.
  相似文献   

20.
The potential toxicity of nanoparticles in plants is scarce and contradictory. Despite the diversity of research efforts, a detailed explanation of the TiO2NPS effects in plant photosynthesis is still missing. The present work gives a new approach to examine the impact of the TiO2NPs on crop production (development and photosynthesis) and plant protection (tolerance and defense systems) in fenugreek (Trigonella foenum graecum L.). Seedlings were assessed in greenhouse trials to estimate the influence of TiO2NPs on physiological characters for 16 days. They were treated with TiO2NPs at a size less than 20 nm. The results revealed that there were no significant effects on seedlings growth and biomass of stem, but a decrease in the fresh weight of leaves after TiO2NPs treatment. Plants treated with 100 mg·L?1 of TiO2NPs presented a reduction and chlorosis in leaf area due to a significant decrease in the chlorophyll a and b contents. The highest value of the photosynthetic pigments was recorded at 50 mg·L?1 of TiO2NPs. However, the treatment with 100 mg·L?1 of TiO2NPs caused a decrease in the levels of chlorophyll a, b and of carotenoids. Both doses of TiO2NPs induced an accumulation of anthocyanins compared to the control after 16 days of seedling development. A nano-stress significantly decreased the flavonoids level, but increased that of polyphenols compared to control after 16 days of exposure. The decrease in the translocation ratio of flavonoids suggests that many of them contain an enediol group, which suggests that they may act as bidentate ligands for anatase TiO2NPs. Accordingly, nano-stressed leaves exhibited significantly enhanced GPOX, CAT and APX activity levels. On the contrary, GPOX and CAT activities were reduced substantially in stems treated with 100 mg·L?1 TiO2NPs. The accumulation of MDA was found to be higher in stems than in leaves. This could be explained by the accumulation of nanoparticles in different organs; it could be that the stems are the favored targets of nanoparticles. These results underline the necessity for a deeper estimation of nanoparticle ecotoxicity and particularly concerning their interaction with plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号