首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Degradation of n-alkanes in diesel oil by Pseudomonas aeruginosa strain WatG (WatG) was verified in soil microcosms. The total petroleum hydrocarbon (TPH) degradation level in two bioaugmentation samples was 51% and 46% for 1 week in unsterilized and sterilized soil microcosms, respectively. The TPH degradation in the biostimulation was of control level (15%). The TPH degradation in aeration-limited samples was clearly reduced when compared with that in aeration-unlimited ones under both sterilized and unsterilized conditions. Addition of WatG into soil microcosms was accompanied by dirhamnolipid production only in the presence of diesel oil. These findings suggest that degradation of n-alkanes in diesel oil in soil microcosms would be facilitated by bioaugmentation of WatG, with production of dirhamnolipid, and also by participation of biostimulated indigenous soil bacteria.  相似文献   

2.
Pseudomonas desmolyticum NCIM 2112 (Pd 2112) and Nocardia hydrocarbonoxydans NCIM 2386 (Nh 2386) demonstrated an ability to degrade diesel and kerosene. Triton X-100 had enhanced the diesel degradation process by reducing the time required for the maximum utilization of total petroleum hydrocarbon. Fourier transform infrared spectroscopy spectrum of degraded diesel indicates the presence of aliphatic and aromatic aldehydes, C=C aromatic nuclei, and substituted benzenes. Surface tension reduction and stable emulsification was increased using consortium when compared to individual strains. Triton X-100 showed increase in microbial attachment to hydrocarbon among the various chemical surfactants tested. For generating a rapid assay to screen microorganisms capable of degrading kerosene, the acetaldehyde produced in the degradation process could be used as an indicator of degradation. These results indicate diesel and kerosene degradation ability of both of the strains.  相似文献   

3.
The diesel-degrading strains, designated as MJ01 and MJ4, were isolated from oil-contaminated soil in Daejeon (South Korea) and were taxonomically characterized using a polyphasic approach and their diesel oil degradation abilities were analyzed. The isolates MJ01 and MJ4 were identified as Acinetobacter haemolyticus and Acinetobacter johnsonii, respectively, based on their 16S rDNA gene sequences, DNA–DNA relatedness, fatty acid profiles and various physiological characteristics. Strains MJ01 and MJ4 were able to use diesel oil as the sole carbon and energy source. Both strains could degrade over 90% of diesel oil with an initial concentration of 20,000 mg/l after incubation for 7 days, the most significant degradation occurred during the first 3 days. To our knowledge, this is the first report on diesel oil-degrading microorganisms among bacterial strains belonging to A. haemolyticus and A. johnsonii.  相似文献   

4.
Among hydrocarbon pollutants, diesel oil is a complex mixture of alkanes and aromatic compounds which are often encountered as soil contaminants leaking from storage tanks and pipelines or as result of accidental spillage. One of the best ecofriendly approaches is to restore contaminated soil by using microorganisms able to degrade those toxic compounds in a bioremediation process. In the present study, nineteen bacteria were isolated by enrichment culture technique from diesel spilled soil collected from electric generator shed of NBAIM, Mau. All the isolates were subjected to screening for lipase production and twelve isolates were found to be positive for lipase. When the isolates were screened for biosurfactant production using CTAB-methylene blue agar plates, only one isolate viz. 2NBDSH3 was found positive which was found to be phylogenetically closely related with Bacillus flexus. Despite having low emulsification index, the bacterium could degrade 88.6% of diesel oil in soil. Biosurfactant from the isolate was extracted and characterized through infra-red spectroscopy which indicated its possible lipopeptide nature which was further supported by strong absorption in UV range in the UV-Vis spectrum. The results of the present study indicated that the isolate either does not produce any bioemulsifier or produces very low amount of emulsifier rather it produces a lipopeptide biosurfactant which helps in degradation of diesel oil by lowering the surface tension. The bacterium thus isolated and characterized can serve as a promising solution for ecofriendly remediation of bacterium diesel contaminated soils.  相似文献   

5.
In recent years, some marine microbes have been used to degrade diesel oil. However, the exact mechanisms underlying the biodegradation are still poorly understood. In this study, a hypothermophilous marine strain, which can degrade diesel oil in cold seawater was isolated from Antarctic floe-ice and identified and named as Rhodococcus sp. LH. To clarify the biodegradation mechanisms, a gas chromatography-mass spectrometry (GC-MS)-based metabolomics strategy was performed to determine the diesel biodegradation process-associated intracellular biochemical changes in Rhodococcus sp. LH cells. With the aid of partial least squares-discriminant analysis (PLS-DA), 17 differential metabolites with variable importance in the projection (VIP) value greater than 1 were identified. Results indicated that the biodegradation of diesel oil by Rhodococcus sp. LH was affected by many different factors. Rhodococcus sp. LH could degrade diesel oil through terminal or sub-terminal oxidation reactions, and might also possess the ability to degrade aromatic hydrocarbons. In addition, some surfactants, especially fatty acids, which were secreted by Rhodococcus into medium could also assist the strain in dispersing and absorbing diesel oil. Lack of nitrogen in the seawater would lead to nitrogen starvation, thereby restraining the amino acid circulation in Rhodococcus sp. LH. Moreover, nitrogen starvation could also promote the conversation of relative excess carbon source to storage materials, such as 1-monolinoleoylglycerol. These results would provide a comprehensive understanding about the complex mechanisms of diesel oil biodegradation by Rhodococcus sp. LH at the systematic level.  相似文献   

6.
This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively. Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and lipid (49.8%). The biosurfactant (1 mg/ml) was able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene, comparatively the emulsification activity was higher than the activity found with Triton X-100 (1 mg/ml). Results obtained in the present study showed the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources. Emulsification activity found with the biosurfactant against different hydrocarbons showed its possible application in bioremediation of environments polluted with various hydrocarbons.  相似文献   

7.
A diesel-degrading bacterium (strain IU5) isolated from oil-contaminated soil was characterized in this study. Fatty acid and 16s rDNA sequence analysis identified IU5 as a strain of Pseudomonas aeruginosa, and growth curve experiments identified the bacterium’s optimum conditions as pH 7 and 30 °C. P. aeruginosa IU5 degraded up to 60 of applied diesel (8500 mg/kg) over 13 days in a soil-slurry phase. In addition, this strain was able to grow on many other petroleum hydrocarbons as sole carbon sources, including crude oil, gasoline, benzene, toluene, xylene, and even PAHs such as naphthalene, phenanthrene and pyrene. Therefore, P. aeruginosa IU5 may be useful for bioremediation of soils and groundwater contaminated with a variety of hydrocarbons.  相似文献   

8.
Microbial population changes were monitored immediately after the Nakhodka oil spill accident in January 1997 at the heavily oil-contaminated Mikuni coast along the Sea of Japan. The total cell number was almost stable for one year at 2–5 × 105 cells mL–1, while the relative occurrence of culturable heterotrophs and degraders of oil components such as C-heavy oil, kerosene, and n-tetradecane varied, showing a maximum (>50% of the total) immediately following the accident. Gene amplification and phylogenetic analysis of a dilution culture using C-heavy oil as the sole carbon and energy source revealed that one of the predominant oil degraders at the oil-contaminated coast in 2 weeks after the accident closely resembled the aromatic hydrocarbon decomposer Cycloclasticus pugetii. Microbial community composition in oil-contaminated seawater was estimated at the molecular level using newly developed oligonucleotide probes, probe wash-off curve estimation, and quantitative fluorescence dot-blot hybridization techniques. At two different oil-polluted sites, harbor and intertidal regions, the C. pugetii group was estimated to make up 23–25% of the total Bacteria population, followed by the aliphatic hydrocarbon decomposer Alcanivorax borkumensis, which formed 4–7% of the Bacteria. In incubation experiments using floated oil slick and indigenous microbes collected at the harbor, oil degradation activities were enhanced by the addition of both organic and inorganic nutrients. Significant decreases were found in aromatic and aliphatic hydrocarbon fractions: 54–60% and 22–24% in 2 weeks to 68–77% and 23–32% in 2 months, respectively.  相似文献   

9.
In recent years, several strains capable of degrading 1,4-dioxane have been isolated from the genera Pseudonocardia and Rhodococcus. This study was conducted to evaluate the 1,4-dioxane degradation potential of phylogenetically diverse strains in these genera. The abilities to degrade 1,4-dioxane as a sole carbon and energy source and co-metabolically with tetrahydrofuran (THF) were evaluated for 13 Pseudonocardia and 12 Rhodococcus species. Pseudonocardia dioxanivorans JCM 13855T, which is a 1,4-dioxane degrading bacterium also known as P. dioxanivorans CB1190, and Rhodococcus aetherivorans JCM 14343T could degrade 1,4-dioxane as the sole carbon and energy source. In addition to these two strains, ten Pseudonocardia strains could degrade THF, but no Rhodococcus strains could degrade THF. Of the ten Pseudonocardia strains, Pseudonocardia acacia JCM 16707T and Pseudonocardia asaccharolytica JCM 10410T degraded 1,4-dioxane co-metabolically with THF. These results indicated that 1,4-dioxane degradation potential, including degradation for growth and by co-metabolism with THF, is possessed by selected strains of Pseudonocardia and Rhodococcus, although THF degradation potential appeared to be widely distributed in Pseudonocardia. Analysis of soluble di-iron monooxygenase (SDIMO) α-subunit genes in THF and/or 1,4-dioxane degrading strains revealed that not only THF and 1,4-dioxane monooxygenases but also propane monooxygenase-like SDIMOs can be involved in 1,4-dioxane degradation.  相似文献   

10.
Two strains, NF4 and NF5, of a yellow-colored gram-negative bacterium were isolated from sediments of Lake Baikal and from old oil sludge of the Nizhnekamsk oil-processing plant. The cells of the strains are ultrasmall coccoids or short rods, measuring 0.2–0.4 × 0.2–0.5 μm; the average cell volume ranges from 0.004 to 0.04 μm3. A considerable proportion (30–60%) of cells have nanometer dimensions (180–300 nm in diameter and 0.004–0.02 μm3 in volume). The new isolates are thus among the smallest representatives of presently known free-living ultramicrobacteria. The two studied isolates are gram-negative nonmotile cells possessing a pronounced outer membrane. The cells do not have flagella and are not capable of gliding motility. They divide by constriction, budding, and multiple septation. The multiplicity of reproduction mechanisms results in a high degree of cell polymorphism. The isolates are chemoorganotrophic, aerobic, psychrotolerant, oxidase- and catalase-positive. Their characteristic trait is the absence of extracellular hydrolytic enzymes, such as proteases, lipases, pectinases, and cellulases. Menaquinone MK-6 is the main respiratory quinone; the flexirubin pigment was not detected. The G + C contents of the DNA of strains NF4 and NF5 are 40.8 and 40.5 mol %, respectively. The DNA-DNA hybridization level of strains NF4 and NF5 was close to 100%. Analysis of the 16S rRNA gene sequences and the fatty acid compositions showed that the isolates are most closely related to certain representatives of the genus Chryseobacterium (C. solincola, C. antarcticum, and C. jeonii). However, the differences in the 16S rRNA gene sequences, as well as in the phenotypic properties, such as formation of ultrasmall cells, the absence of extracellular hydrolases, oligotrophy, and the capacity for epibiosis on bacterial cells, suggest that the studied strains belong to a new species of the genus Chryseobacterium. The capacity for epibiosis, i.e., the ability to exist in a tightly adhered state on the surfaces of host Bacillus subtilis cells, is a peculiar trait of the studied isolates. It is assumed that adhesion of the cells of strains NF4 and NF5 (members of the phylum Bacteroidetes) occurs via by the same unique mechanism as the mechanism that we previously described for representatives of Alphaproteobacteria (Kaistia sp., NF1, and NF3), which use polysaccharide chains equipped with sticky granules as trapping and constricting cords.  相似文献   

11.
Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The maximum degradation rate of MTBE was 16 mg protein h and 46 mg/g protein h for TBA. The culture transformed 77% of the total carbon to 14CO2. The estimated yield for MTBE was 0.18 g dry wt/g MTBE.  相似文献   

12.
Comparison of cell-wall-bound extracellular proteinases (CEPs) from Lactobacillus paracasei (LBP) ssp. paracasei natural isolates BGHN14, BGAR75 and BGAR76 with Lactococcus lactis (LCL) ssp. cremoris Wg2, in their action on αS1-, β- and κ-casein was done. The CEPs of LBP strains were able to degrade αS1- and β-caseins and their caseinolytic specificity depended on the type of buffer used. These CEPs, compared with LCL Wg2, differ in four amino acid residues in small segments predicted to be involved in substrate binding. The most striking features of this comparison are the presence of Ala instead of Ser329 and the presence of Thr instead of Asn256 and Ala299, in the subtilisin-like region of the CEP in LBP natural isolates. Additional conservative amino acid substitution Leu to Ile364 was found.  相似文献   

13.
Although biofilms produced by various Leuconostoc sp. are economically important as contaminants of sugar processing plants, very few studies are available on these systems. Twelve strains of Leuconostoc citreum and L. mesenteroides that produce a variety of extracellular glucans were compared for their capacity to produce biofilms. 16s rRNA sequence analysis was used to confirm the species identity of these strains, which included four isolates of L. mesenteroides, five isolates of L. citreum, and three glucansucrase mutants of L. citreum strain NRRL B-1355. Strains identified as L. mesenteroides produce glucans that are generally similar to commercial dextran. Nevertheless, these strains differed widely in their capacity to form biofilms, with densities ranging from 2.7 to 6.1 log cfu/cm(2). L. citreum strains and their derivatives produce a variety of glucans. These strains exhibited biofilm densities ranging from 2.5 to 5.9 log cfu/cm(2). Thus, biofilm-forming capacity varied widely on a strain-specific basis in both species. The types of polysaccharides produced did not appear to affect the ability to form biofilms.  相似文献   

14.
Seventeen isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and two isolates of Beauveria bassiana (Balsamo) Vuillemin were evaluated for their pathogenicity against the tobacco spider mite, Tetranychus evansi Baker & Pritchard. In the laboratory all the fungal isolates were pathogenic to the adult female mites, causing mortality between 22.1 and 82.6%. Isolates causing more than 70% mortality were subjected to dose–response mortality bioassays. The lethal concentration causing 50% mortality (LC50) values ranged between 0.7×107 and 2.5×107 conidia ml−1. The lethal time to 50% mortality (LT50) values of the most active isolates of B. bassiana and M. anisopliae strains varied between 4.6 and 5.8 days. Potted tomato plants were artificially infested with T. evansi and treated with B. bassiana isolate GPK and M. anisopliae isolate ICIPE78. Both fungal isolates reduced the population density of mites as compared to untreated controls. However, conidia formulated in oil outperformed the ones formulated in water. This study demonstrates the prospects of pathogenic fungi for the management of T. evansi.  相似文献   

15.
Bacterial strains capable of utilizing methylphosphonic acid (MP) or glyphosate (GP) as the sole sources of phosphorus were isolated from soils contaminated with these organophosphonates. The strains isolated from MP-contaminated soils grew on MP and failed to grow on GP. One group of the isolates from GP-contaminated soils grew only on MP, while the other one grew on MP and GP. Strains Achromobacter sp. MPS 12 (VKM B-2694), MP degraders group, and Ochrobactrum anthropi GPK 3 (VKM B-2554D), GP degraders group, demonstrated the best degradative capabilities towards MP and GP, respectively, and were studied for the distribution of their organophosphonate catabolism systems. In Achromobacter sp. MPS 12, degradation of MP was catalyzed by C–P lyase incapable of degrading GP (C–P lyase I). Adaptation to growth on GP yielded the strain Achromobacter sp. MPS 12A, which retained its ability to degrade MP via C–P lyase I and was capable of degrading GP with formation of sarcosine, thus suggesting the involvement of a GP-specific C–P lyase II. O. anthropi GPK 3 also degraded MP via C–P lyase I, but degradation of GP in it was initiated by glyphosate oxidoreductase, which was followed by product transformation via the phosphonatase pathway.  相似文献   

16.
P-fimbriae, S-fimbriae and AFA-adhesins are virulence factors responsible for adherence ofEscherichia coli strains to extraintestinal host-cell surface. Detection ofpap-,sfa- andafa-specific sequences performed by PCR revealed 74%pap +, 65%sfa +, and 8.3%afa + strains in a group of 84 extraintestialE. coli isolates. Detection in a group of fecal strains showed 29%pap +, 21%sfa + and 4%afa + strains.pap together withsfa were found as the most frequent combination (56%) among extraintestinal isolates probably due to localization ofpap-andsfa-operons on a common pathogenicity island. The occurrence ofafa-specific sequence among 56 urine strains was 11%, although noafa + strain was detected among 28 gynecological isolates. No strains with detected adhesin operons were found among twenty (24%) extraintestinalE. coli strains.  相似文献   

17.
A total of 139 2-haloacid degrading bacteria strains were isolated from the marine sponge Hymeniacidon perlevis using a modified enrichment medium and a pH indicator method. After screening on indicator agar and 2-chloropropionic acid (2-CPA) liquid medium, 11 isolates with high degrading activities were characterized and initially identified. Seven of the 11 isolates were able to degrade 2-CPA at 8% salt, and four isolates (DEH 66, DEH 99, DEH125 and DEH138) degraded 2-CPA at 15% salt. Eight of the 11 isolates utilized all four types of organohalogen compounds used in this study. The DEH99 and DEH138 isolates exhibited the best enantioselectivity towards (S)-2-chloropropionic acid (S-CPA) and (R)-2-chloropropionic acid (R-CPA), respectively. The dehalogenase activities of DEH84 against racemic CPA, DEH99 against S-CPA, DEH138 against R-CPA and DEH130 against racemic CPA were 0.16U/mg, 0.06U/mg, 0.12U/mg and 0.19U/mg, respectively. Based on 16S rRNA sequence analysis, the 11 isolates were clustered into the Rhodobacteraceae family of α-proteobacteria and the Pseudomonadaceae family of γ-proteobacteria. To our knowledge, this is the first report detailing the isolation of organisms of Pseudomonas stuzeri sp. and the Rhodobacteraceae family with 2-haloacid dehalogenase activity from marine sponges.  相似文献   

18.
We report here the degradation of a pesticide, malathion, by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU, isolated from soil samples collected from malathion contaminated field and an army firing range respectively. Both the strains were cultured in the presence of malathion under aerobic and energy-limiting conditions. Both strains grew well in the medium having malathion concentration up to 0.15%. Reverse phase HPLC–UV analysis indicated that Strain KB2 was able to degrade 72.20% of malaoxon (an analogue of malathion) and 36.22% of malathion, while strain PU degraded 87.40% of malaoxon and 49.31% of malathion, after 7 days of incubation. The metabolites mal-monocarboxylic acid and mal-dicarboxylic acid were identified by Gas chromatography/mass spectrometry. The factors affecting biodegradation efficiency were investigated and effect of malathion concentration on degradation rate was also determined. The strain was analyzed for carboxylesterase activity and maximum activity 210 ± 2.5 U ml−1 and 270 U ± 2.7 ml−1 was observed for strains KB2 and PU, respectively. Cloning and sequencing of putative malathion degrading carboxylesterase gene was done using primers based PCR approach.  相似文献   

19.
Five environmental mycobacterium isolates that degrade polycyclic aromatic hydrocarbons (PAHs) were associated with barley root surfaces after growth of the seedlings from inoculated seed. Mycobacterium cells were detected along the total root length for four of these isolates. These PAH-degrading mycobacterium strains had hydrophilic cell surfaces, whereas one strain, MCS, that was hydrophobic had reduced association along the root length with no cells being detected from the root tips. The root-tip-competent strain, KMS, was competitive for its root association in the presence of the root-colonizing pseudomonad, Pseudomonas putida KT2440. All mycobacterium strains utilized simple sugars (fructose, glucose) and the trisaccharide 6-kestose, present in barley root washes, for planktonic growth, but they differed in their potential for biofilm formation under in vitro conditions. Mineralization of pyrene by the KMS strain occurred when the components in the barley root wash were amended with labeled pyrene suggesting to us that mineralization could occur in plant rhizospheres containing such mycobacterium strains.  相似文献   

20.
Pyrene and fluoranthene, when supplied as the sole carbon source, were not degraded by Burkholderia sp. VUN10013. However, when added in a mixture with phenanthrene, both pyrene and fluoranthene were degraded in liquid broth and soil. The amounts of pyrene and fluoranthene in liquid media (initial concentrations of 50 mg l−1 each) decreased to 42.1% and 41.1%, respectively, after 21 days. The amounts of pyrene and fluoranthene in soil (initial concentrations of 75 mg kg−1 dry soil each) decreased to 25.8% and 12.1%, respectively, after 60 days. None of the high molecular weight (HMW) polycylic aromatic hydrocarbons (PAHs) tested adversely affected phenanthrene degradation by this bacterial strain and the amount of phenanthrene decreased rapidly within 3 and 15 days of incubation in liquid broth and soil, respectively. Anthracene also stimulated the degradation of pyrene or fluoranthene by Burkholderia sp. VUN10013, but to a lesser extent than phenanthrene. The extent of anthracene degradation decreased in the presence of these HMW PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号