首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
播种时期与密度对关中灌区夏玉米群体生理指标的影响   总被引:46,自引:1,他引:46  
采用二次饱和D最优试验设计,运用作物群体生理学方法,研究了关中灌区玉米密度、播期与群体生理指标的关系及其影响效应.结果表明,关中灌区夏播条件下,在6月13日—7月22日,播期与玉米籽粒产量、干物质积累量(DMA)、吐丝期叶面积指数(LAImax)、总光合势(LAD)、群体净同化率(NAR)、作物生长率(CGR)呈负相关,播期对CGR、LAD的影响较大,对LAImax和NAR的影响较小;在45000~65918株·hm-2范围内,密度与玉米籽粒产量、DMA、LAImax、LAD、CGR呈正相关,而与NAR呈负相关,密度对CGR、LAImax和LAD的影响较大,而对NAR的影响较小.播期对玉米群体生理指标的总影响效应显著大于密度,实际生产中应力争早播.对密度和播期与玉米群体生理指标建立的回归模型表明,陕单8806玉米在关中灌区夏播中实现高产的适宜播期为6月10—20日,密度应控制在57767~71706株·hm-2.  相似文献   

2.
冬小麦种植模式对水分利用效率的影响   总被引:4,自引:0,他引:4  
齐林  陈雨海  周勋波  刘岩  高会军 《生态学报》2011,31(7):1888-1895
在同一种植密度下,设3种种植模式,包括25 cm等行距平作、"20+40"大小行平作和"20+40"沟播。研究了冬小麦沟播和平作种植对产量及水分利用效率的影响。结果表明,"20+40"沟播产量显著高于平作;叶片相对含水量(RWC)、水势(Ψw)和叶片水平水分利用效率随生育进程的推进呈整体下降趋势,其中,沟播处理RWCΨw和叶片水平水分利用效率的平均值均显著高于等行距和"20+40"平作处理;另外,"20+40"沟播还能明显提高冬小麦田土壤贮水量,减少总耗水量,从而提高水分利用效率。灌水增加了冬小麦产量和叶片相对含水量等各水分指标,降低了水分利用效率,减小了各种植模式间差异。"20+40"沟播在灌水135 mm条件下既保障产量又较等行距节水25%。由此表明,冬小麦"20+40"沟播可改善叶片水分状况,提高水分利用效率,增加作物产量。  相似文献   

3.
为了探明旱作条件下无机营养对作物产量和水分利用效率的补偿效应,我们在宁南黄土高原半干旱地区开展了为期两年的春小麦密度与肥料试验。通过4种播种密度和5种肥力水平的综合研究结果表明,在不同处理的籽粒产量和水分利用效率排序中,播种密度为500粒/m^2时,以施肥量90kg/hm^2N和135kg/hm^2P2O5处理的产量和水分利用效率为最大。与不施肥的对照相比,增施肥料与籽粒产量和水分利用效率的提高成显著的正相关关系,相关系数分别达到0.959和0.894,而播种密度则与产量和水分利用效率的相关性不显著。增施肥料虽然能够提高可育小花数,但随着播种密度的增大,穗粒数和千粒重反而呈下降趋势,表明可育小花数对肥料水平反应敏感,而穗粒数和千粒重主要受播种密度的影响。施肥能够促进春小麦根系的生长发育,特别是促进浅层根量的增加,增强了作物的水分养分吸收。另外,不同种类肥料配施的结果表明,单施P肥或者N、P、K配合施用,可使春小麦产量分别提高44.6%和55.4%。N、P、K配合施肥还能够提高品质,使籽粒中的P、N、K含量分别提高18.5%、18.4%和8.1%。上述研究结果说明,控制播种密度、改善土壤肥力对于促进旱地春小麦高效利用有限水分具有明显的补偿效应。  相似文献   

4.
This study investigates the condition of commercial miscanthus fields, growers’ concerns and reasons for growing the crop and also the modelling of a realistic commercial yield. Juvenile and mature Miscanthus × giganteus crops of varying age are surveyed in growers’ fields across mid‐England. We record in‐field plant density counts and the morphology of crops of different ages. Mature crops thrive on both clay and sandy soils. Plants surveyed appear robust to drought, weeds and disease, the only vulnerability is rhizome condition when planting. Mature miscanthus planted pre‐2014 continues to develop, spreading into planting gaps and growing more tillers. In stands planted post‐2014, improved planting techniques reduce planting gaps and create a reasonably consistent planting density of 12,500 plants/ha. The main reason for growers' investment in miscanthus is not financial return, but relates to its low requirement for field operations, low maintenance cost and regeneration. This offers practical solutions for difficult field access and social acceptability near public places (related to spray operations and crop vandalism). Wildlife is abundant in these fields, largely undisturbed except for harvest. This contributes to the greening of agriculture; fields are also used for gamebird cover and educational tours. This crop is solving practical problems for growers while improving the environment. Observed yield data indicate gradual yield increase with crop age, a yield plateau but no yield decrease since 2006. In stands with low planting densities, yields plateau after 9 years. Surveyed yield data are used to parameterize the MiscanFor bioenergy model. This produces options to simulate either juvenile yields or a yield for a landscape containing different aged crops. For mature English crop yields of 12 t ha?1 year?1, second‐ and third‐year juvenile harvests average 7 t ha?1 year?1 and a surrounding 10 km by 10 km area of distributed crop age would average 9 t ha?1 year?1.  相似文献   

5.
Smallholder farmers in southern African countries rely primarily on cultural control and hoe weeding to combat weeds, but often times, they are unable to keep up with the weeding requirements of the crop because of its laboriousness, causing them to incur major yield losses. Optimisation of crop planting pattern could help to increase yield and suppress weeds and to reduce the critical period of weed control and the weeding requirements to attain maximum yield. Experiments were carried out in Zimbabwe during two growing seasons to assess the effect of maize density and spatial arrangement on crop yield, growth and seed production of weeds and to determine the critical period for weeding. Planting maize at 60 cm row distance achieved higher yields and better weed suppression than planting at 75 or 90 cm row distance. Increasing crop densities beyond the customary three to four plants m−2 gave modest reductions in weed biomass but also diminished crop yields, probably because of increased competition for water and nutrient resources. Maize planted in narrow rows (60 cm) intercepted more radiation and suffered less yield reduction from delaying hoe weeding than those planted in wider rows (75 or 90 cm), and the duration of the weed-free period required to attain maximum grain yield was 3 weeks shorter in the narrow spacing than that in the 75- and 90-cm row spacings. Weeding was more effective in curtailing weed seed production in the narrow row spatial arrangements than in the wide row planting. The results of these studies show that narrow row spacings may reduce weeding requirements and increase yields.  相似文献   

6.
Suppression of weed growth in a crop canopy can be enhanced by improving crop competitiveness. One way to achieve this is by modifying the crop planting pattern. In this study, we addressed the question to what extent a uniform planting pattern increases the ability of a crop to compete with weed plants for light compared to a random and a row planting pattern, and how this ability relates to crop and weed plant density as well as the relative time of emergence of the weed. To this end, we adopted the functional-structural plant modelling approach which allowed us to explicitly include the 3D spatial configuration of the crop-weed canopy and to simulate intra- and interspecific competition between individual plants for light. Based on results of simulated leaf area development, canopy photosynthesis and biomass growth of the crop, we conclude that differences between planting pattern were small, particularly if compared to the effects of relative time of emergence of the weed, weed density and crop density. Nevertheless, analysis of simulated weed biomass demonstrated that a uniform planting of the crop improved the weed-suppression ability of the crop canopy. Differences in weed suppressiveness between planting patterns were largest with weed emergence before crop emergence, when the suppressive effect of the crop was only marginal. With simultaneous emergence a uniform planting pattern was 8 and 15 % more competitive than a row and a random planting pattern, respectively. When weed emergence occurred after crop emergence, differences between crop planting patterns further decreased as crop canopy closure was reached early on regardless of planting pattern. We furthermore conclude that our modelling approach provides promising avenues to further explore crop-weed interactions and aid in the design of crop management strategies that aim at improving crop competitiveness with weeds.  相似文献   

7.
Trap crops that stimulate nematode egg hatching but not reproduction have been reported as an effective means for managing certain nematodes. Studies were carried out at two field sites each year in 1998 and 1999 to evaluate the potential of trapping the soybean cyst nematode (Heterodera glycines) with soybean and pea in the corn year to manage the nematode in Minnesota. The trap crops were planted on the same day as corn at each site and later killed with the herbicide glyphosate. Nematode egg densities were determined at planting, 1 and 2 months after planting, and at harvest. Treatments included four seeding rates (0, 124,000, 247,000, and 494,000 seeds/ha) of resistant soybean as a trap crop and four kill dates (3, 4, 5, and 6 weeks after planting). No effects of the trap-crop and kill-date treatments on H. glycines population density, corn yield, and the followingyear soybean yield were observed at the two locations. In a second study, the experiment included four trap-crop comparisons (resistant soybean at 494,000 seeds/ha, susceptible soybean at 494,000 seeds/ha, pea at 1,482,000 seeds/ha, and no trap crop) and five kill dates (3, 4, 5, 6 weeks after planting, and no-kill). At the Waseca site, egg density at harvest was lower where resistant soybean was grown for 6 weeks and where pea was grown for 5 and 6 weeks compared with where no trap crop was grown. Maintaining pea plants for more than 5 weeks, however, reduced corn yield by 20% at the Waseca site. At the Lamberton site, egg density at harvest was lower where the susceptible soybean was grown for 5 weeks compared with where no trap crop was grown. Even with significant reduction of eggs in some treatments, use of soybean and pea as trap crops in the corn year was not an effective means for managing H. glycines.  相似文献   

8.
Planting density is a primary consideration in silviculture; however, planting arrangement is often ignored. Most, if not all, forest plantations are arranged in rectangular or square lattices (i.e., grids). Using a simple mathematical model, we investigate the potential influence of planting arrangement on planting density, biomass yield, and rotation period by assuming that efficiently arranging trees is similar to packing congruent circles on a plane. The hexagonal lattice achieves the densest circle packing on a plane; therefore, a hexagonal or triangular lattice arrangement of stems provides the highest planting density for a given spacing. Using packing density to quantify arrangement efficiency, tree crowns in a hexagonal lattice fill approximately 90.7% of available area at initial canopy contact, while tree crowns in a square lattice fill approximately 78.5% of available area at initial canopy contact. The hexagonal lattice permits about a 15% higher density than the square lattice, which allows canopy closure to occur earlier without any change in individual tree growth. Short rotation woody crop (SRWC) systems are excellent candidates under the model’s assumptions of level stand with even-age monoculture. If belowground resources are non-limiting, a hexagonal lattice arrangement shortens rotation period and thus optimizes the biomass yield per land area over time. Higher productivity over time is central to sustainable and efficient use of limited area for bioenergy and biomass products.  相似文献   

9.
Short-rotation woody crops like shrub willow are a potential source of biomass for energy generation and bioproducts. However, since willow crops are not widely grown in North America, the economics of this crop and the impacts of key crop production and management components are not well understood. We developed a budget model, EcoWillow v1.4 (Beta), that allows users to analyze the entire production-chain for willow systems from the establishment to the delivery of wood chips to the end-user. EcoWillow was used to analyze how yield, crop management options, land rent, fuel, labor, and other costs influence the Internal Rate of Return (IRR) of willow crop systems in upstate New York. We further identified cost variables with the greatest potential for reducing production and transport costs of willow biomass. Productivity of 12 oven-dried tons (odt) ha?1 year?1 and a biomass price of $ (US dollars) 60 odt?1 results in an IRR of 5.5%. Establishment, harvesting, and transportation operations account for 71% of total costs. Increases in willow yield, rotation length, and truck capacity as well as a reduction in harvester down time, land costs, planting material costs, and planting densities can improve the profitability of the system. Results indicate that planting speed and fuel and labor costs have a minimal effect on the profitability of willow biomass crops. To improve profitability, efforts should concentrate on (1) reducing planting stock costs, (2) increasing yields, (3) optimizing harvesting operations, and (4) co-development of plantation designs with new high-yielding clones to reduce planting density.  相似文献   

10.
种植密度作为影响作物产量和品质的重要因素, 会造成植物对于光照、水分和养分的竞争。为研究种植密度对苜蓿生长与产量的影响, 在日光温室环境下, 以紫花苜蓿(Medicago sativa)为材料, 设置25、100、400、800、1 500、2 000株·m -2, 共6个种植密度, 对紫花苜蓿的种群密度和生长状况进行了观测。结果表明, 各处理播种后15天的平均种植密度分别为25、100、373、745、1 255、1 938株·m -2; 随着紫花苜蓿的生长, 除了低密度(25、100株·m -2)处理没有发生植株数量的变化外, 其余4个密度处理植株数量均有所减少, 即发生不同程度的自疏, 至第二茬收获时(播种后第187天)种群数量分别减少为297、571、759、839株·m -2。植株个体的株高、基径和分枝数量随着现存密度的增加呈指数下降; 个体生物量与现存密度的关系满足竞争密度效应的幂函数关系, 即随着密度的增加而减小。紫花苜蓿单位面积地上生物量符合最终产量恒定法则, 然而, 随着密度的增加, 地下生物量有先增加后减小的趋势。  相似文献   

11.
The possibility that reduced photomorphogenic responses could increase field crop yield has been suggested often, but experimental support is still lacking. Here, we report that ectopic expression of the Arabidopsis PHYB (phytochrome B) gene, a photoreceptor involved in detecting red to far-red light ratio associated with plant density, can increase tuber yield in field-grown transgenic potato (Solanum tuberosum) crops. Surprisingly, this effect was larger at very high densities, despite the intense reduction in the red to far-red light ratios and the concomitant narrowed differences in active phytochrome B levels between wild type and transgenics at these densities. Increased PHYB expression not only altered the ability of plants to respond to light signals, but they also modified the light environment itself. This combination resulted in larger effects of enhanced PHYB expression on tuber number and crop photosynthesis at high planting densities. The PHYB transgenics showed higher maximum photosynthesis in leaves of all strata of the canopy, and this effect was largely due to increased leaf stomatal conductance. We propose that enhanced PHYB expression could be used in breeding programs to shift optimum planting densities to higher levels.  相似文献   

12.
不同种植方式对花生田间小气候效应和产量的影响   总被引:5,自引:0,他引:5  
宋伟  赵长星  王月福  王铭伦  程曦  康玉洁 《生态学报》2011,31(23):7188-7195
在大田高产条件下,研究了同一密度下不同种植方式对花生田间小气候效应及产量的影响.结果表明:增大行距和采用大小行种植方式有利于增加田间透光率,提高冠层空气温度与地表温度,降低田间相对湿度,提高田间CO2浓度,提高群体光合速率,进而增加荚果产量.但是行距过大,导致各种环境资源的浪费.采用大行距55cm小行距35cm的大小行种植方式是比较合理的种植方式.  相似文献   

13.
通过田间试验研究了播种期和种植密度对冬油菜籽粒产量和含油率的影响.结果表明: 播种期主要影响分枝花序籽粒产量,而种植密度不仅影响分枝花序籽粒产量,还对主花序籽粒产量产生一定影响;籽粒含油率不受播种期的影响.主花序籽粒产量占单株籽粒产量的比例随种植密度的增加而升高,主花序籽粒含油率比分枝花序高约1%,因此小区籽粒含油率随种植密度的增加显著升高.研究区冬油菜播种期不能晚于10月中旬,10月下旬播种会显著降低籽粒产量;种植密度在每平方米36~48株可以提高冬油菜籽粒产量和含油率.  相似文献   

14.
种植牧草在白浆土改良中的作用   总被引:24,自引:3,他引:21  
研究了农田生态系统中引种紫花苜蓿对土壤生态环境的影响.结果表明,紫花苜蓿种植3年以后,白浆土的通气孔隙增加2.37-5.34%,渗透系数增加0.7-5.5倍,土壤有机碳增加0.349-0.600%,作物产量平均提高25%.种植苜蓿比单种作物的产投比高0.36-0.39.  相似文献   

15.
Change in the planting arrangement can provide roots a different environment that alters access to soil resources, which can subsequently impact the productivity of above ground crop compartments. Therefore, the aim of this study was to assess the sugarcane yield as well as the distribution and biomass accumulation of roots across different spacing configuration treatments, in the absence of the confounding effect of machine traffic between the crop rows, in two areas with contrasting soil conditions. Two experiments were conducted under field conditions, in clayey and sandy soil. The experiments were conducted across two crop seasons and incorporated a randomized block design that tested six planting configurations: CS, conventional spacing (1.50 m); AS, alternated spacing (0.90?×?1.50 m); TS, triple spacing (0.75?×?0.75?×?1.50 m); PP 1.0 m, precision planting (1.0?×?1.0 m); PP 0.75 m, precision planting (0.75?×?0.75 m); and PP 0.50 m, precision planting (0.5?×?0.5 m). Results showed, in clayey soil, higher sugarcane yield for the PP 0.75 m spacing in the two crops evaluated; while, the PP 1.0 m spacing had the higher production in sandy soil, but only during the first ratoon. In relation to the total sugarcane production per unit area, the yield gains from reduced spacing were most evident for the first two crop cycles. The distribution and root biomass accumulation of sugarcane did not explain the above ground productivity in planting configurations.  相似文献   

16.
Oliveira  A.L.M.  Urquiaga  S.  Döbereiner  J.  Baldani  J.I. 《Plant and Soil》2002,238(2):205-215
We investigated the effects of an autumn sowing of contrasting cover crops (oats, rye and a combination of oats and rye) on soil aggregate stability, mycorrhizal colonization, phosphorus uptake and yield of sweet corn planted the following summer. Rye is a common cover crop in the middle Atlantic region of the United States of America. It grows slowly in the autumn, survives the winter, grows rapidly in the spring and flowers in the summer. Thus, herbicide is commonly used to kill rye prior to planting spring crops. Oats, in contrast, grows rapidly in the autumn but is killed by frost during the winter. Thus, with oats, potentially less herbicide is needed to prepare the field for spring planting. When compared to fallow, oats was as effective as rye in increasing mycorrhizal colonization of sweet corn, density of mycorrhizal hyphae, and soil aggregate stability. An oats cover crop may thus be a viable alternative to rye. The combination of cover crops (rye and oats), however, was significantly better than single species of cover crops in terms of sweet corn mycorrhizal colonization, P uptake and yield of sweet corn.  相似文献   

17.
Increasing crop productivity to meet rising demands for food and energy, but doing so in an environmentally sustainable manner, is one of the greatest challenges for agriculture to date. In Ireland, Miscanthus × giganteus has the potential to become a major feedstock for bioenergy production, but the economic feasibility of its cultivation depends on high yields. Miscanthus fields can have a large number of gaps in crop cover, adversely impacting yield and hence economic viability. Predominantly positive effects of Miscanthus on biodiversity reported from previous research might be attributable to high crop patchiness, particularly during the establishment phase. The aim of this research was to assess crop patchiness on a field scale and to analyse the relationship between Miscanthus yield and species richness and abundance of selected taxa of farmland wildlife. For 14 Miscanthus fields at the end of their establishment phase (4–5 years after planting), which had been planted either on improved grassland (MG) or tilled arable land (MT), we determined patchiness of the crop cover, percentage light penetration (LP) to the lower canopy, Miscanthus shoot density and height, vascular plants and epigeic arthropods. Plant species richness and noncrop vegetation cover in Miscanthus fields increased with increasing patchiness, due to higher levels of LP to the lower canopy. The species richness of ground beetles and the activity density of spiders followed the increase in vegetation cover. Plant species richness and activity density of spiders on both MT and MG fields, as well as vegetation cover and activity density of ground beetles on MG fields, were negatively associated with Miscanthus yield. In conclusion, positive effects of Miscanthus on biodiversity can diminish with increasing productivity. This matter needs to be considered when assessing the relative ecological impacts of developing biomass crops in comparison with other land use.  相似文献   

18.
通过田间试验,研究了FACE(开放式空气CO2浓度升高)条件下C3作物水稻(Oryza sativa)和C4杂草稗草(Echinochloa crusgalli)的生长和竞争关系,结果表明,FACE条件下C3植物水稻生物量和产量增加,吉片数增加,分蘖数增加,叶面积系数(LAI)增大;而C4植物稗草相反,FACE条件下水稻和稗草中面积均减少,而净同化率(NAR)均增加;FACE条件下水稻-稗草比例为1:1时,水稻与稗草的生物量比率、产量比率、LAI比率、茎蘖比率和NAR比率均增加,水稻-稗草的竞争关系发生变化,水稻(C3植物)竞争能力增加,稗草(C4植物)竞争能力下降。  相似文献   

19.
通过田间试验,研究了FACE(开放式空气CO2浓度升高)条件下C3作物水稻(Oryza sativa)和C4杂草稗草(Echinochloa crusgalli)的生长和竞争关系.结果表明,FACE条件下C3植物水稻生物量和产量增加,叶片数增加,分蘖数增加,叶面积系数(LAI)增大;而C4植物稗草相反.FACE条件下水稻和稗草叶面积均减少,而净同化率(NAR)均增加.FACE条件下水稻稗草比例为1:1时,水稻与稗草的生物量比率、产量比率、LAI比率、茎蘖比率和NAR比率均增加,水稻稗草的竞争关系发生变化,水稻(C3植物)竞争能力增加,稗草(C4植物)竞争能力下降.  相似文献   

20.
通过对紧凑大穗型玉米品种陕单902的研究发现,保证适宜种植密度,增加群体总粒数是陕单902高产的基础;建立合理的群全结构和干物质生产体系,提高吐丝至成熟期的干物质生产能力是陕单902高产的关键;协调群体库源关系,提高成粒率是陕单902高产的根本。采用合理密植(不超过60000株/hm^2),宽窄行和双株栽培,保证足量氮肥和适宜氮,磷,钾配比等主要配套技术可改善大穗型玉米品种陕单902的群体库源性状,提高产量潜和。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号