首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have been studying the differing characteristics of oligodendrocyte- type-2 astrocyte (O-2A) progenitors isolated from optic nerves of perinatal and adult rats. These two cell types display striking differences in their in vitro phenotypes. In addition, the O- 2Aperinatal progenitor population appears to have a limited life-span in vivo, while O-2Aadult progenitors appear to be maintained throughout life. O-2Aperinatal progenitors seem to have largely disappeared from the optic nerve by 1 mo after birth, and are not detectable in cultures derived from optic nerves of adult rats. In contrast, O-2Aadult progenitors can first be isolated from optic nerves of 7-d-old rats and are still present in optic nerves of 1-yr-old rats. These observations raise two questions: (a) From what source do O-2Aadult progenitors originate; and (b) how is the O-2Aadult progenitor population maintained in the nerve throughout life? We now provide in vitro evidence indicating that O-2Aadult progenitors are derived directly from a subpopulation of O-2Aperinatal progenitors. We also provide evidence indicating that O-2Aadult progenitors are capable of prolonged self renewal in vitro. In addition, our data suggests that the in vitro generation of oligodendrocytes from O-2Aadult progenitors occurs primarily through asymmetric division and differentiation, in contrast with the self-extinguishing pattern of symmetric division and differentiation displayed by O-2Aperinatal progenitors in vitro. We suggest that O-2Aadult progenitors express at least some properties of stem cells and thus may be able to support the generation of both differentiated progeny cells as well as their own continued replenishment throughout adult life.  相似文献   

2.
Identification of an adult-specific glial progenitor cell   总被引:18,自引:0,他引:18  
We have found that glial progenitor cells isolated from the optic nerves of adult rats are fundamentally different from their counterparts in perinatal animals. In our studies on bipotential oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, we have seen that O-2Aadult progenitor cells can be distinguished from O-2Aperinatal progenitors by their morphology and antigenic phenotype, their much longer cell cycle time (65 h versus 18 h), slower rate of migration rate (4 microns h-1 versus 21 microns h-1), and their time course of differentiation into oligodendrocytes or type-2 astrocytes in vitro (less than or equal to 3 days versus greater than 5 days). At least some of the differences between O-2Aadult and O-2Aperinatal progenitor cells appear to be clearly related to the differing cellular requirements of the adult and perinatal central nervous system (CNS). The properties of the O-2Aadult progenitor cells may make these cells ideally suited for the needs of the adult CNS, where rapid exponential increases in the number of oligodendrocytes and O-2A progenitor cells would be inappropriate. However, the properties of the O-2Aadult progenitor cells are such that they may not be able to replace oligodendrocytes in sufficient numbers to repair extensive or recurrent damage in the adult brain, such as in patients suffering from the human demyelinating disease multiple sclerosis. Moreover, available information about other tissues suggests that the transition from perinatal to adult progenitor cell types may represent a developmental mechanism of general importance.  相似文献   

3.
It has been shown previously that cultures of rat optic nerve contain three types of macroglial cells--oligodendrocytes and two types of astrocytes. Type-1 astrocytes develop from their own precursor cells beginning before birth, while oligodendrocytes and type-2 astrocytes develop postnatally from a common bipotential precursor called the O-2A progenitor cell. Proliferating O-2A progenitor cells give rise to postmitotic oligodendrocytes beginning around birth, and to type-2 astrocytes beginning in the second postnatal week. Studies in vitro have suggested that platelet-derived growth factor (PDGF), secreted by type-1 astrocytes, plays an important part in timing oligodendrocyte development: PDGF seems to keep O-2A progenitor cells proliferating until an intrinsic clock in the progenitor cells initiates the process leading to oligodendrocyte differentiation. The clock apparently determines when a progenitor cell becomes unresponsive to PDGF, at which point the cell stops dividing and, as a consequence, automatically differentiates into an oligodendrocyte. Here we have used radiolabelled PDGF to show that O-2A progenitor cells have PDGF receptors, suggesting that these cells respond directly to PDGF. The receptors resemble the type A PDGF receptor previously described on human fibroblasts and are initially retained when progenitor cells stop dividing and develop in vitro into oligodendrocytes. The latter finding indicates that receptor loss is not the reason that progenitor cells initially become mitotically unresponsive to PDGF.  相似文献   

4.
As part of our attempts to understand principles that underly organism development, we have been studying the development of the rat optic nerve. This simple tissue is composed of three glial cell types derived from two distinct cellular lineages. Type-1 astrocytes appear to be derived from a monopotential neuroepithelial precursor, whereas type-2 astrocytes and oligodendrocytes are derived from a common oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell. Type-1 astrocytes modulate division and differentiation of O-2A progenitor cells through secretion of platelet-derived growth factor, and can themselves be stimulated to divide by peptide mitogens and through stimulation of neurotransmitter receptors. In vitro analysis indicates that many dividing O-2A progenitors derived from optic nerves of perinatal rats differentiate symmetrically and clonally to give rise to oligodendrocytes, or can be induced to differentiate into type-2 astrocytes. O-2Aperinatal progenitors can also differentiate to form a further O-2A lineage cell, the O-2Aadult progenitor, which has properties specialized for the physiological requirements of the adult nervous system. In particular, O-2Aadult progenitors have many of the features of stem cells, in that they divide slowly and asymmetrically and appear to have the capacity for extended self-renewal. The apparent derivation of a slowly and asymmetrically dividing cell, with properties appropriate for homeostatic maintenance of existing populations in the mature animal, from a rapidly dividing cell with properties suitable for the rapid population and myelination of central nervous system (CNS) axon tracts during early development, offers novel and unexpected insights into the possible origin of self-renewing stem cells and also into the role that generation of stem cells may play in helping to terminate the explosive growth of embryogenesis. Moreover, the properties of O-2Aadult progenitor cells are consistent with, and may explain, the failure of successful myelin repair in conditions such as multiple sclerosis, and thus seem to provide a cellular biological basis for understanding one of the key features of an important human disease.  相似文献   

5.
Systematic comparison of the properties of oligodendrocytetype-2 astrocyte (O-2A) progenitor cells derived from optic nerves of perinatal and adult rats has revealed that these two populations differ in many fundamental properties. In particular, O-2Aperinatal progenitor cells are rapidly dividing cells capable of generating large numbers of oligodendrocytes over a relatively short time span. Oligodendrocyte differentiation generally occurs synchronously in all members of a clone, thus leading to elimination of that clone from the pool of dividing cells. However, some O-2Aperinatal progenitors are also capable of giving rise to O-2Aadult progenitors. These latter cells express many of the characteristics of stem cells of adult animals, including the capacity to undergo asymmetric division and differentiation. We suggest that precursors which function during early development give rise to terminally differentiated end-stage cells and to a second generation of precursors with properties more appropriate for later developmental stages. It is this second generation of precursors which express the properties of stem cells in adult animals, and we therefore further suggest that our work offers novel insights into the possible developmental origin of stem cells.  相似文献   

6.
The effects of X irradiation on oligodendrocyte-type-2-astrocyte (O-2A) progenitor cells derived from different regions of the perinatal central nervous system (CNS) of rats were investigated in vitro. The O-2A progenitor cells can differentiate into either oligodendrocytes or type-2 astrocytes. The depletion of these cells could lead to demyelination, seen as a delayed reaction after irradiation of the CNS in vivo. To quantify cell survival, O-2A progenitor cells were grown on monolayers of type-1 astrocytes. Monolayers of type-1 astrocytes stimulate O-2A progenitor cells to divide. O-2A progenitor cells were irradiated in vitro and clonogenic cell survival was measured. The O-2A progenitor cells derived from perinatal optic nerve were quite radiosensitive in contrast to O-2A progenitor cells derived from perinatal spinal cord and perinatal corpus callosum. Furthermore, O-2A progenitor cells derived from the optic nerve formed smaller colonies, with most colonies showing early differentiation into oligodendrocytes. In contrast, more than half of the colonies derived from corpus callosum did not show any differentiation after 2 weeks in vitro and kept growing. These differences support the view that perinatal O-2A progenitor cells derived from the optic nerve are committed progenitor cells while the O-2A progenitor cells derived from the perinatal corpus callosum and the perinatal spinal cord have more stem cell properties.  相似文献   

7.
The bipotential glial progenitor cells (O-2A progenitors), which during development of the rat optic nerve give rise to oligodendrocytes and type 2 astrocytes, are stimulated to divide in culture by platelet-derived growth factor (PDGF), and there is evidence that PDGF is important for development of the O-2A cell lineage in vivo. We have visualized PDGF mRNA in the rat optic nerve by in situ hybridization, and its spatial distribution is compatible with the idea that type 1 astrocytes are the major source of PDGF in the nerve. We can detect mRNA encoding the A chain, but not the B chain of PDGF in the brain and optic nerve, suggesting that the major form of PDGF in the central nervous system is a homodimer of A chains (PDGF-AA). PDGF-AA is a more potent mitogen for O-2A progenitor cells than is PDGF-BB, while the reverse is true for human or rat fibroblasts. Fibroblasts display two types of PDGF receptors, type A receptors which bind to all three dimeric isoforms of PDGF, and type B receptors which bind PDGF-BB and PDGF-AB, but have low affinity for PDGF-AA. Our results suggest that O-2A progenitor cells possess predominantly type A receptors, and proliferate during development in response to PDGF-AA secreted by type 1 astrocytes.  相似文献   

8.
L E Lillien  M C Raff 《Neuron》1990,4(4):525-534
Oligodendrocytes and type-2 astrocytes develop sequentially from O-2A progenitor cells in the rat CNS. We have reproduced this sequential development in a simplified, serum-free in vitro system: in cultures of newborn optic nerve cells treated with platelet-derived growth factor to maintain O-2A progenitor cell proliferation, progenitor cells differentiate into oligodendrocytes during the first week in vitro and into type-2 astrocytes during the second week. Thus all of the signals needed for type-2 astrocyte development are made by serum-free optic nerve cultures, indicating that neurons are not required. By manipulating the cellular composition of the cultures, we provide evidence that type-2 astrocyte development does not depend on oligodendrocytes, but instead requires non-O-2A lineage cells, which are also responsible for timing this development.  相似文献   

9.
In the central nervous system (CNS) O-2A (Oligodendrocyte type 2 Astrocyte) progenitor cells have been proposed as potential target cells, and their depletion by irradiation will cause demyelination. The extent and time course of repopulation of these glial stem cells were studied in the adult rat optic nerve after irradiation in vivo. The number of O-2A progenitor cells was measured quantitatively by an in vitro clonogenic assay. Although the CNS is typically a late-responding tissue, repopulation was initiated almost immediately after irradiation and after several weeks a plateau was reached that lasted up to 6 months. Single doses of 4-12 Gy of X rays caused a permanent reduction in the number of O-2A progenitor cells. An analysis of the colony size of O-2A progenitor cells showed a sustained reduction in the number of offspring of cells surviving a dose of 12 Gy. In addition, the colony size of unirradiated progenitors diminished with increasing age of the animals.  相似文献   

10.
A role for TGF-beta in oligodendrocyte differentiation   总被引:1,自引:0,他引:1       下载免费PDF全文
《The Journal of cell biology》1993,121(6):1397-1407
  相似文献   

11.
We have studied the developmental appearance of the O-2A(adult) progenitor cell, a specific type of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell that we have identified previously in cultures prepared from the optic nerves of adult rats. O-2A(adult) progenitors differ from their counterparts in perinatal animals (O-2A perinatal progenitor cells) in antigenic phenotype, morphology, cell cycle time, rate of migration, time course of differentiation into oligodendrocytes or type-2 astrocytes and sensitivity to the lytic effects of complement in vitro. In the present study, we have found that O-2A(adult) progenitor-like cells first appear in the developing optic nerve approximately 7 days after birth and that by 1 month after birth these cells appear to be the dominant progenitor population in the nerve. However, the perinatal-to-adult transition in progenitor populations is a gradual one and O-2A(adult) and O-2A perinatal progenitors coexist in the optic nerve for 3 weeks or more. In addition, cells derived from optic nerves of P21 rats express characteristic features of O-2adult and O-2A perinatal progenitors for extended periods of growth in the same tissue culture dish. Our results thus indicate that the properties that distinguish these two types of O-2A progenitors from each other are expressed in apparently identical environments. Thus, these cells must either respond to different signals present in the environment, or must respond with markedly different behaviours to the binding of identical signalling molecules.  相似文献   

12.
M Noble  K Murray 《The EMBO journal》1984,3(10):2243-2247
Optic nerves of neonatal rats contain a bipotential glial progenitor cell which can be induced by tissue culture conditions to differentiate into either an oligodendrocyte (the myelin-forming cell of the CNS) or a type 2 astrocyte (an astrocyte population found only in the myelinated tracts of the CNS). In our previous studies most oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells differentiated within 3 days in vitro with relatively little division of the progenitors or their differentiated progeny. We have now found that the O-2A progenitors are stimulated to divide in culture by purified populations of type 1 astrocytes, another glial cell-type found in the rat optic nerve. This cell-cell interaction appears to be mediated by a soluble factor(s) and results in the production of large numbers of both progenitor cells and oligodendrocytes. As type 1 astrocytes are the major glial cell-type in the optic nerve when oligodendrocytes first begin to be produced in large numbers in vivo, our results suggest that this astrocyte subpopulation may play an important role in expanding the oligodendrocyte population during normal development.  相似文献   

13.
《The Journal of cell biology》1989,109(6):3411-3417
In the rat optic nerve, bipotential O-2A progenitor cells give rise to oligodendrocytes and type 2 astrocytes on a precise schedule. Previous studies suggest that PDGF plays an important part in timing oligodendrocyte development by stimulating O-2A progenitor cells to proliferate until they become mitotically unresponsive to PDGF, stop dividing, and differentiate automatically into oligodendrocytes. Since the loss of mitotic responsiveness to PDGF has been shown not to be due to a loss of PDGF receptors, we have now examined the possibility that the unresponsiveness results from an uncoupling of these receptors from early intracellular signaling pathways. We show that (a) although PDGF does not stimulate newly formed oligodendrocytes to synthesize DNA, it induces an increase in cytosolic Ca2+ in these cells; (b) a combination of a Ca2+ ionophore plus a phorbol ester mimics the effect of PDGF, both in stimulating O-2A progenitor cell division and in reconstituting the normal timing of oligodendrocyte differentiation in culture; and (c) the same combination of drugs does not stimulate newly formed oligodendrocytes to proliferate, even in the presence of PDGF or dibutyryl cAMP. The most parsimonious explanation for these results is that O-2A progenitor cells become mitotically unresponsive to PDGF because the intracellular signaling pathways from the PDGF receptor to the nucleus are blocked downstream from the receptor and some of the early events that are triggered by receptor activation.  相似文献   

14.
FGF modulates the PDGF-driven pathway of oligodendrocyte development   总被引:24,自引:0,他引:24  
PDGF promotes the growth of oligodendrocyte type-2 astrocyte (O-2A) glial progenitor cells and allows their timely differentiation into oligodendrocytes, the CNS myelin-forming cells. We demonstrate that basic FGF is a potent mitogen for brain O-2A progenitor cells, but blocks their differentiation into oligodendrocytes. Treatment with basic FGF also influences the level of expression of PDGF receptors on O-2A progenitor cells. These cells express only the alpha chain PDGF receptor, and the levels of PDGF alpha receptors decrease as the cells differentiate. In contrast, basic FGF maintains a high level of functionally responsive PDGF alpha receptors in O-2A progenitors. Thus basic FGF activates a signaling pathway that can positively regulate PDGF receptors in O-2A progenitor cells. In this way basic FGF or an FGF-like factor may modulate the production of myelin-forming cells in the CNS.  相似文献   

15.
The bipotential progenitor cells (O-2A progenitors) that produce oligodendrocytes and type-2 astrocytes in the developing rat optic nerve are induced to proliferate in culture by type-1 astrocytes. Here, we show that the astrocyte-derived mitogen is platelet-derived growth factor (PDGF). PDGF is a potent mitogen for O-2A progenitor cells in vitro. Mitogenic activity in astrocyte-conditioned medium comigrates with PDGF on a size-exclusion column, competes with PDGF for receptors, and is neutralized by antibodies to PDGF. PDGF dimers can be immunoprecipitated from astrocyte-conditioned medium, and mRNA encoding PDGF is present in rat brain throughout gliogenesis. We propose that astrocyte-derived PDGF is crucial for the control of myelination in the developing central nervous system.  相似文献   

16.
A demyelinating disease induced in C57B1/6N mice by intracranial injection of a coronavirus (murine hepatitis virus strain A59) is followed by functional recovery and efficient CNS myelin repair. To study the biological properties of the cells involved in this repair process, glial cells were isolated and cultured from spinal cords of these young adult mice during demyelination and remyelination. Using three-color immunofluorescence combined with [3H]thymidine autoradiography, we have analyzed the antigenic phenotype and mitotic potential of individual glial cells. We identified oligodendrocytes with an antibody to galactocerebroside, astrocytes with an antibody to glial fibrillary acidic protein, and oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells with the O4 antibody. Cultures from demyelinated tissue differed in several ways from those of age-matched controls: first, the total number of O-2A lineage cells was strikingly increased; second, the O-2A population consisted of a higher proportion of O4-positive astrocytes and cells of mixed oligodendrocyte-astrocyte phenotype; and third, all the cell types within the O-2A lineage showed enhanced proliferation. This proliferation was not further enhanced by adding PDGF, basic fibroblast growth factor (bFGF), or insulin-like growth factor I (IGF-I) to the defined medium. However, bFGF and IGF-I seemed to influence the fate of O-2A lineage cells in cultures of demyelinated tissue. Basic FGF decreased the percentage of cells expressing galactocerebroside. In contrast, IGF-I increased the relative proportion of oligodendrocytes. Thus, O-2A lineage cells from adult mice display greater phenotypic plasticity and enhanced mitotic potential in response to an episode of demyelination. These properties may be linked to the efficient remyelination achieved in this demyelinating disease.  相似文献   

17.
M C Raff  E R Abney  J Fok-Seang 《Cell》1985,42(1):61-69
The rat optic nerve contains three types of macroglial cells: type 1 astrocytes first appear at embryonic day 16 (E16), oligodendrocytes at birth (E21), and type 2 astrocytes between postnatal days 7 and 10. The oligodendrocytes and type 2 astrocytes develop from a common, bipotential O-2A progenitor cell. We show here that although O-2A progenitor cells in E17 optic nerve prematurely stop dividing and differentiate into oligodendrocytes within 2 days in culture, when cultured on a monolayer of type 1 astrocytes, they continue to proliferate; moreover, the first cells differentiate into oligodendrocytes after 4 days in vitro, which is equivalent to the time that oligodendrocytes first appear in vivo. Our findings suggest that the timing of oligodendrocyte differentiation depends on an intrinsic clock in the O-2A progenitor cell that counts cell divisions that are driven by a growth factor (or factors) produced by type 1 astrocytes.  相似文献   

18.
Different CNS regions exhibit different temporal patterns of oligodendrocyte generation and myelinogenesis. Characterization of oligodendrocyte-type-2 astrocyte progenitor cells (here abbreviated as O-2A/OPCs) isolated from different regions indicates these developmental patterns are consistent with properties of the specific O-2A/OPCs resident in each region. Marked differences were seen in self-renewal and differentiation characteristics of O-2A/OPCs isolated from cortex, optic nerve and optic chiasm. In conditions where optic nerve-derived O-2A/OPCs generated oligodendrocytes within 2 days, oligodendrocytes arose from chiasm-derived cells after 5 days and from cortical O-2A/OPCs only after 7-10 days. These differences, which appear to be cell-intrinsic (and may be related to intracellular redox state), were manifested both in reduced percentages of clones producing oligodendrocytes and in a lesser representation of oligodendrocytes in individual clones. In addition, responsiveness of optic nerve-, chiasm- and cortex-derived O-2A/OPCs to thyroid hormone (TH) and ciliary neurotrophic factor (CNTF), well-characterized inducers of oligodendrocyte generation, was inversely related to the extent of self-renewal observed in basal division conditions. Our results demonstrate hitherto unrecognized complexities among the precursor cells thought to be the immediate ancestors of oligodendrocytes, and suggest that the properties of these different populations may contribute to the diverse time courses of myelination in different CNS regions.  相似文献   

19.
Neurogenesis is known to persist in the adult mammalian central nervous system (CNS). The identity of the cells that generate new neurons in the postnatal CNS has become a crucial but elusive issue. Using a transgenic mouse, we show that NG2 proteoglycan-positive progenitor cells that express the 2',3'-cyclic nucleotide 3'-phosphodiesterase gene display a multipotent phenotype in vitro and generate electrically excitable neurons, as well as astrocytes and oligodendrocytes. The fast kinetics and the high rate of multipotent fate of these NG2+ progenitors in vitro reflect an intrinsic property, rather than reprogramming. We demonstrate in the hippocampus in vivo that a sizeable fraction of postnatal NG2+ progenitor cells are proliferative precursors whose progeny appears to differentiate into GABAergic neurons capable of propagating action potentials and displaying functional synaptic inputs. These data show that at least a subpopulation of postnatal NG2-expressing cells are CNS multipotent precursors that may underlie adult hippocampal neurogenesis.  相似文献   

20.
Neuronal influences on glial progenitor cell development   总被引:4,自引:0,他引:4  
J M Levine 《Neuron》1989,3(1):103-113
The role of cell-cell interactions in the development of bipotential glial progenitor cells in cultures of rat cerebellum and optic nerve was studied. In the cerebellar cultures, progenitor cells divide slowly and most of their progeny develop into additional progenitor cells. Progenitor cells isolated from postconfluent cultures of cerebellum, however, develop rapidly into oligodendrocytes when grown in a serum-free medium. Factors secreted or shed into the medium by young cerebellar interneurons stimulate optic nerve progenitor cells to divide and promote the survival of progenitor cells. These factors appear to alter the function of the internal clock that regulates the timing of oligodendrocyte differentiation. These results suggest that the neuronal microenvironment can influence the lineage decisions of multipotential glial progenitor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号