首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial chemotaxis may have a significant impact on the structure and function of bacterial communities. Quantification of chemotactic motion is necessary to identify chemoeffectors and to determine the bacterial transport parameters used in predictive models of chemotaxis. When the chemotactic bacteria consume the chemoeffector, the chemoeffector gradient to which the bacteria respond may be significantly perturbed by the consumption. Therefore, consumption of the chemoeffector can confound chemotaxis measurements if it is not accounted for. Current methods of quantifying chemotaxis use bacterial concentrations that are too high to preclude chemoeffector consumption or involve ill-defined conditions that make quantifying chemotaxis difficult. We developed a method of quantifying bacterial chemotaxis at low cell concentrations (~105 CFU/ml), so metabolism of the chemoeffector is minimized. The method facilitates quantification of bacterial-transport parameters by providing well-defined boundary conditions and can be used with volatile and semivolatile chemoeffectors.  相似文献   

2.
Phagocyte motility and chemotaxis are included in a distributed mathematical model for the inflammatory response to bacterial invasion of tissue. Both uniform and non-uniform steady state solutions may occur for the model equations governing bacteria and phagocyte densities in a macroscopic tissue region. The non-uniform states appear to be more dangerous because they allow large bacteria densities concentrated in local foci, and in some cases greater total bacteria and phagocyte populations. Using a linear stability analysis, it is shown that a phagocyte chemotactic response smaller than a critical value can lead to a non-uniform state, while a chemotactic response greater than this critical value stabilizes the uniform state. This result is the opposite of that found for the role of chemotaxis in aggregation of slimemold amoebae because, in the inflammatory response, the chemotactic population serves as an inhibitor rather than an activator. We speculate that these non-uniform steady states could be related to the localized cell aggregation seen in chronic granulomatous inflammation. The formation of non-uniform states is not necessarily a consequence of defective phagocyte chemotaxis, however. Rather, certain values of the kinetic parameters can yield values for the critical chemotactic response which are greater than the normal response.Numerical computations of the transient inflammatory response to bacterial challenge are presented, using parameter values estimated from the experimental literature wherever possible.  相似文献   

3.
In a dilute liquid environment in which cell-cell interaction is negligible, flagellated bacteria, such as Escherichia coli, perform chemotaxis by biased random walks alternating between run-and-tumble. In a two-dimensional crowded environment, such as a bacterial swarm, the typical behavior of run-and-tumble is absent, and this raises the question whether and how bacteria can perform chemotaxis in a swarm. Here, by examining the chemotactic behavior as a function of the cell density, we showed that chemotaxis is surprisingly enhanced because of cell crowding in a bacterial swarm, and this enhancement is correlated with increase in the degree of cell body alignment. Cells tend to form clusters that move collectively in a swarm with increased effective run length, and we showed analytically that this resulted in increased drift velocity toward attractants. We also explained the enhancement by stochastically simulating bacterial chemotaxis in a swarm. We found that cell crowding in a swarm enhances chemotaxis if the cell-cell interactions used in the simulation induce cell-cell alignment, but it impedes chemotaxis if the interactions are collisions that randomize cell moving direction. Therefore, collective motion in a bacterial swarm enhances chemotaxis.  相似文献   

4.
The chemotactic properties of the soybean nodule bacterium Bradyrhizobium japonicum were studied in the presence of synthetic fine-dispersed materials. It was shown that fine-dispersed silica (FDS) and its variety modified with aluminum oxide (MFDS) reduce bacterial chemotaxis to glucose. In addition, FDS increases the irregular motility of B. japonicum, and MFDS decreases it. This is in agreement with the effect of the materials on the rate of nodule bacterium growth.  相似文献   

5.
Evolution of biological sensory systems is driven by the need for efficient responses to environmental stimuli. A paradigm among prokaryotes is the chemotaxis system, which allows bacteria to navigate gradients of chemoattractants by biasing their run-and-tumble motion. A notable feature of chemotaxis is adaptation: after the application of a step stimulus, the bacterial running time relaxes to its pre-stimulus level. The response to the amino acid aspartate is precisely adapted whilst the response to serine is not, in spite of the same pathway processing the signals preferentially sensed by the two receptors Tar and Tsr, respectively. While the chemotaxis pathway in E. coli is well characterized, the role of adaptation, its functional significance and the ecological conditions where chemotaxis is selected, are largely unknown. Here, we investigate the role of adaptation in the climbing of gradients by E. coli. We first present theoretical arguments that highlight the mechanisms that control the efficiency of the chemotactic up-gradient motion. We discuss then the limitations of linear response theory, which motivate our subsequent experimental investigation of E. coli speed races in gradients of aspartate, serine and combinations thereof. By using microfluidic techniques, we engineer controlled gradients and demonstrate that bacterial fronts progress faster in equal-magnitude gradients of serine than aspartate. The effect is observed over an extended range of concentrations and is not due to differences in swimming velocities. We then show that adding a constant background of serine to gradients of aspartate breaks the adaptation to aspartate, which results in a sped-up progression of the fronts and directly illustrate the role of adaptation in chemotactic gradient-climbing.  相似文献   

6.
Bacterial chemotaxis influences the ability of bacteria to survive and thrive in most environments, including polluted ones. Despite numerous reports of the phenotypic characterization of chemotactic bacteria, only a few molecular details of chemoreceptors for aromatic pollutants have been described. In this study, the molecular basis of chemotaxis toward an environmentally toxic chlorinated aromatic pollutant, 4-chloroaniline (4CA), was evaluated. Among the three Pseudomonas spp. tested, Pseudomonas aeruginosa PAO1 exhibited positive chemotaxis both to the nonmetabolizable 4CA, where 4-chloroacetanilide was formed as a dead-end transformation product, and to the metabolizable catechol. Molecular analysis of all 26 mutants with a disrupted methyl-accepting chemotaxis gene revealed that CtpL, a chromosomally encoded chemoreceptor, was responsible for the positive chemotactic response toward 4CA. Since CtpL has previously been described to be a major chemoreceptor for inorganic phosphate at low concentrations in PAO1, this report describes a fortuitous ability of CtpL to function toward aromatic pollutants. In addition, its regulation not only was dependent on the presence of the chemoattractant inducer but also was regulated by conditions of phosphate starvation. These results expand the range of known chemotactic transducers and their function in the environmental bacterium PAO1.  相似文献   

7.
Bacterial chemotaxis may have a significant impact on the structure and function of bacterial communities. Quantification of chemotactic motion is necessary to identify chemoeffectors and to determine the bacterial transport parameters used in predictive models of chemotaxis. When the chemotactic bacteria consume the chemoeffector, the chemoeffector gradient to which the bacteria respond may be significantly perturbed by the consumption. Therefore, consumption of the chemoeffector can confound chemotaxis measurements if it is not accounted for. Current methods of quantifying chemotaxis use bacterial concentrations that are too high to preclude chemoeffector consumption or involve ill-defined conditions that make quantifying chemotaxis difficult. We developed a method of quantifying bacterial chemotaxis at low cell concentrations ( approximately 10(5) CFU/ml), so metabolism of the chemoeffector is minimized. The method facilitates quantification of bacterial-transport parameters by providing well-defined boundary conditions and can be used with volatile and semivolatile chemoeffectors.  相似文献   

8.
9.
In vitro chemotaxis by invertebrate hemocytes is demonstrated by the attraction of granulocytes from the operculate snail Viviparus malleatus to heat-killed Staphylococcus aureus and to N-acetyl-d-glucosamine. A soluble constituent of the hemolymph, a bacterial agglutinin, was necessary for this positive response to both of these chemotactic agents. Agglutination studies revealed the presence of two nonhomologous agglutinins in the hemolymph of V. malleatus.  相似文献   

10.
11.
We study kinetic models for chemotaxis, incorporating the ability of cells to assess temporal changes of the chemoattractant concentration as well as its spatial variations. For prescribed smooth chemoattractant density, the macroscopic limit is carried out rigorously. It leads to a drift equation with a chemotactic sensitivity depending on the time derivative of the chemoattractant density. As an application it is shown by numerical experiments that the new model can resolve the chemotactic wave paradox. For this purpose, the macroscopic equation is coupled to a simple activation-inhibition model for the chemoattractant which produces the chemoattractant waves typical for the slime mold Dictyostelium discoideum.  相似文献   

12.
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations.  相似文献   

13.
Alts three-dimensional cell balance equation characterizing the chemotactic bacteria was analyzed under the presence of one-dimensional spatial chemoattractant gradients. Our work differs from that of others who have developed rather general models for chemotaxis in the use of a non-smooth anisotropic tumbling frequency function that responds biphasically to the combined temporal and spatial chemoattractant gradients. General three-dimensional expressions for the bacterial transport parameters were derived for chemotactic bacteria, followed by a perturbation analysis under the planar geometry. The bacterial random motility and chemotaxis were summarized by a motility tensor and a chemotactic velocity vector, respectively. The consequence of invoking the diffusion-approximation assumption and using intrinsic one-dimensional models with modified cellular swimming speeds was investigated by numerical simulations. Characterizing the bacterial random orientation after tumbles by a turn angle probability distribution function, we found that only the first-order angular moment of this turn angle probability distribution is important in influencing the bacterial long-term transport. Mathematics Subject Classification (2000):60G05, 60J60, 82A70  相似文献   

14.
Measuring the chemotactic response of Borrelia burgdorferi, the bacterial species that causes Lyme disease, is relatively more difficult than measuring that of other bacteria. Because these spirochetes have long generation times, enumerating cells that swim up a capillary tube containing an attractant by using colony counts is impractical. Furthermore, direct counts with a Petroff-Hausser chamber is problematic, as this method has a low throughput and necessitates a high cell density; the latter can lead to misinterpretation of results when assaying for specific attractants. Only rabbit serum and tick saliva have been reported to be chemoattractants for B. burgdorferi. These complex biological mixtures are limited in their utility for studying chemotaxis on a molecular level. Here we present a modified capillary tube chemotaxis assay for B. burgdorferi that enumerates cells by flow cytometry. Initial studies identified N-acetylglucosamine as a chemoattractant. The assay was then optimized with respect to cell concentration, incubation time, motility buffer composition, and growth phase. Besides N-acetylglucosamine, glucosamine, glucosamine dimers (chitosan), glutamate, and glucose also elicited significant chemoattractant responses, although the response obtained with glucose was weak and variable. Serine and glycine were nonchemotactic. To further validate and to exploit the use of this assay, a previously described nonchemotactic cheA2 mutant was shown to be nonchemotactic by this assay; it also regained the wild-type phenotype when complemented in trans. This is the first report that identifies specific chemical attractants for B. burgdorferi and the use of flow cytometry for spirochete enumeration. The method should also be useful for assaying chemotaxis for other slow-growing prokaryotic species and in specific environments in nature.  相似文献   

15.
Chemotaxis, together with motility, helps bacteria foraging in their habitat. Motile bacteria exhibit a variety of motility patterns, often controlled by chemotaxis, to promote dispersal. Motility in many bacteria is powered by a bidirectional flagellar motor. The flagellar motor has been known to briefly pause during rotation because of incomplete reversals or stator detachment. Transient pauses were previously observed in bacterial strains lacking CheY, and these events could not be explained by incomplete motor reversals or stator detachment. Here, we systematically analyzed swimming trajectories of various chemotaxis mutants of the monotrichous soil bacterium, Azospirillum brasilense. Like other polar flagellated bacterium, the main swimming pattern in A. brasilense is run and reverse. A. brasilense also uses run-pauses and putative run-reverse-flick-like swimming patterns, although these are rare events. A. brasilense mutant derivatives lacking the chemotaxis master histidine kinase, CheA4, or the central response regulator, CheY7, also showed transient pauses. Strikingly, the frequency of transient pauses increased dramatically in the absence of CheY4. Our findings collectively suggest that reversals and pauses are controlled through signaling by distinct CheY homologs, and thus are likely to be functionally important in the lifestyle of this soil organism.  相似文献   

16.
In many natural environments, bacterial populations experience suboptimal growth due to the competition with other microorganisms for limited resources. The chemotactic response provides a mechanism by which bacterial populations can improve their situation by migrating toward more favorable growth conditions. For bacteria cultured under suboptimal growth conditions, evidence for an enhanced chemotactic response has been observed previously. In this article, for the first time, we have quantitatively characterized this behavior in terms of two macroscopic transport coefficients, the random motility and chemotactic sensitivity coefficients, measured in the stopped-flow diffusion chamber assay. Escherichia coli cultured over a range of growth rates in a chemostat exhibits a dramatic increase in the chemotactic sensitivity coefficient for D-fucose at low growth rates, while the random motility coefficient remains relatively constant by comparison. The change in the chemotactic sensitivity coefficient is accounted for by an independently measured increase in the number of galactose-binding proteins which mediate the chemotactic signal. This result is consistent with the relationship between macroscopic and microscopic parameters for chemotaxis, which was proposed in the mathematical model of Rivero and co-workers. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
Vibrio anguillarum and Vibrio alginolyticus exhibited significant adhesion to and chemotactic abilities towards mucus collected from the skin, gills, and intestine of gilt-head sea bream. Quadratic polynomial models for chemotaxis designed to estimate the influence of temperature demonstrated a differential bacterial chemotaxis depending of the source of the mucus, with the chemotaxis towards intestinal mucus being the least influenced.  相似文献   

18.
The camphor-degrading microorganism, Pseudomonas putida strain ATCC 17453, is an aerobic, gram-negative soil bacterium that uses camphor as its sole carbon and energy source. The genes responsible for the catabolic degradation of camphor are encoded on the extra-chromosomal CAM plasmid. A monooxygenase, cytochrome P450cam, mediates hydroxylation of camphor to 5-exo-hydroxycamphor as the first and committed step in the camphor degradation pathway, requiring a dioxygen molecule (O2) from air. Under low O2 levels, P450cam catalyzes the production of borneol via an unusual reduction reaction. We have previously shown that borneol downregulates the expression of P450cam. To understand the function of P450cam and the consequences of down-regulation by borneol under low O2 conditions, we have studied chemotaxis of camphor induced and non-induced P. putida strain ATCC 17453. We have tested camphor, borneol, oxidized camphor metabolites and known bacterial attractants (d)-glucose, (d) - and (l)-glutamic acid for their elicitation chemotactic behavior. In addition, we have used 1-phenylimidazole, a P450cam inhibitor, to investigate if P450cam plays a role in the chemotactic ability of P. putida in the presence of camphor. We found that camphor, a chemoattractant, became toxic and chemorepellent when P450cam was inhibited. We have also evaluated the effect of borneol on chemotaxis and found that the bacteria chemotaxed away from camphor in the presence of borneol. This is the first report of the chemotactic behaviour of P. putida ATCC 17453 and the essential role of P450cam in this process.  相似文献   

19.
The biased random walk undergone by chemotactic bacteria such as Escherichia coli will be influenced at the microscopic level by flow in the ambient medium. In this paper, we model swimming bacteria being advected and rotated by a simple shear flow. Under certain scaling assumptions, we obtain an advection—diffusion equation for cell density, when the chemotactic response is small, which shows a coupling between the rotation and chemotaxis. We also present an alternative method for calculating the chemotactic flux in an unbounded region which is valid for more general chemotactic responses.  相似文献   

20.
Escherichia coli chemotaxis has long served as a simple model of environmental signal processing, and bacterial responses to single chemical gradients are relatively well understood. Less is known about the chemotactic behavior of E. coli in multiple chemical gradients. In their native environment, cells are often exposed to multiple chemical stimuli. Using a recently developed microfluidic chemotaxis device, we exposed E. coli cells to two opposing but equally potent gradients of major attractants, methyl-aspartate and serine. The responses of E. coli cells demonstrated that chemotactic decisions depended on the ratio of the respective receptor number of Tar/Tsr. In addition, the ratio of Tar to Tsr was found to vary with cells’ growth conditions, whereby it depended on the culture density but not on the growth duration. These results provide biological insights into the decision-making processes of chemotactic bacteria that are subjected to multiple chemical stimuli and demonstrate the importance of the cellular microenvironment in determining phenotypic behavior.In their natural environment, both prokaryotic and eukaryotic cells are exposed to multiple chemical stimuli. It is thus important to learn how cells make a decision when confronted with complex chemical stimuli. Escherichia coli bacteria have long served as a model system for chemotaxis studies due to their known and simple genetic makeup. Signaling in bacterial chemotaxis is comparatively well understood (3, 18, 19). To summarize it briefly, there are five types of chemoreceptors in E. coli, of which Tar and Tsr are the most abundant. The basic functional chemosensing unit is a ternary complex that consists of transmembrane chemoreceptors, a linker molecule, CheW, and a histidine kinase, CheA. Within each functional receptor complex, the receptors are known to function in a cooperative manner (9, 12, 16). Upon the binding of attractant molecules, this sensory complex undergoes a conformational change that suppresses the autophosphorylation activity of CheA. This response is then transmitted to the flagellar motor via a regulator protein, CheY. As a result, the run time of an E. coli bacterium is lengthened when swimming toward a high-chemoattractant-concentration region (4).While the molecular mechanisms governing bacterial chemotaxis in a single gradient have been investigated extensively both in experiments and in theory (see reference 8 and references therein), very little is known about how bacteria behave in the presence of dual chemical gradients (1, 17). Early work by Adler and Tso explored the chemotactic responses of E. coli cells in the presence of both attractant and repellent gradients by using a microcapillary chemotaxis assay (1). Twenty years later, Strauss et al. (17) revisited the problem by using a stop-flow chamber. Both investigations concluded that bacteria sum the chemical signals to provide a coordinated output to control flagellar rotation. However, the molecular mechanisms responsible for this calculation have not yet been explored.In this paper, we investigated the molecular mechanism that underlies the bacterial decision-making processes in two opposing attractant gradients that are sensed by the two most abundant E. coli receptors, Tar and Tsr, respectively. By varying the relative expression levels of Tar and Tsr, we demonstrated that the receptor ratio defines the attractant preference in dual gradients of their ligands. The Tar-to-Tsr ratio itself depends on the cell culture density but not on the duration of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号