首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Oomycete Saprolegnia ferax incorporates 3H from both cycloartenol-[2-3H] and lanosterol-[2-3H] into its normal sterols cholesterol, fucosterol, desmosterol, and 24-methylenecholesterol. It is concluded that sterol biosynthesis in this organism is via cycloartenol and the taxonomic implications are discussed.  相似文献   

2.
24-Dihydrolanosterol-[2-3H] was converted to cholesterol in Chlorella ellipsoidea but ergost-5-enol, poriferasterol, clionasterol were not labelled. The absence of the necessary 24(25) double bond precursor eliminates the possibility of C28 and C29 sterol synthesis. However, it was confirmed that 24-dihydrolanosterol was metabolized by Ochromonas malhamensis to give cholesterol, brassicasterol, and poriferasterol.  相似文献   

3.
When grown in the presence of [CD3]-methionine Achlya heterosexual produces oogoniols containing two deuterium atoms which are located at C-28  相似文献   

4.
A convenient method is described for the preparation of fucosterol-[7-3H2] and 28-isofucosterol-[7-3H2]. Both of these 24-ethylidene sterols, as well as 5α-stigmasta-7,Z-24(28)-diene-3β-ol-[2,4-3H4], were converted into the 24β-ethyl sterol, poriferasterol, by cultures of the chrysophyte alga Ochromonas malhamensis. However, fucosterol-[7-3H2] was not so efficiently incorporated as the other two compounds thus indicating that the configuration of the 24-ethylidene group is of some importance. It is suggested that a 24-ethylidene sterol of the Z-configuration is produced in de novo poriferasterol synthesis and that a Δ22,24(28)-diene may be an important subsequent intermediate.  相似文献   

5.
A cell free microsomal preparation of Zea mays shoots has been employed to investigate the products of the S-adenosyl methionine-cycloartenol m  相似文献   

6.
7.
Examination of the sterols of Zea mays shoots has established that the 24-ethylcholesterol is predominately the 24α-epimer, sitosterol, but the 24-methylcholesterol is a mixture of the 24α- and 24β-epimers. After incubation of Z. mays shoots with [2-14C, (4R)4-3H1]mevalonic acid the sitosterol had a 3H: 14C atomic ratio of 2.09:5 which is consistent with previous results indicating that a Δ24(25) -sterol is implicated in its biosynthesis. By contrast, the 24α- and 24β-methylcholesterol mixture had a higher 3H: 14C atomic ratio of 2.82:5. This can be explained by the operation of two routes for the elaboration of the 24-methylcholesterol side chain. One may proceed via Δ24(25)- and Δ24(25)-sterols to produce the 24α-methylcholesterol with a 3H: 14C atomic ratio of 2:5. The other route may involve reduction of either a Δ24(28)-, a Δ23- or a Δ25-sterol intermediate to give the 24β1-methylcholesterol with a 3H: 14C atomic ratio of 3:5. The proportion of these two labelled compounds in the mixture then determines the observed 3H: 14C atomic ratio (2.82:5). Some evidence for the formation of a Δ25-compound, cyclolaudenol, by Z. mays shoots was provided by incorporation studies employing either [2-14C]mevalonic acid or [Me-14C]methionine as the sterol precursor.  相似文献   

8.
9.
When Chlorella sorokiniana was grown in the presence of 4 ppm AY-9944 total sterol production was unaltered in comparison to control cultures. However, inhibition of sterol biosynthesis was shown by the accumulation of a number of sterols which were considered to be intermediates in sterol biosynthesis. The sterols which were found in treated cultures were identified as cyclolaudenol, 4α,14α-dimethyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 4α,14α-dimethyl -5α-ergosta-8,25-dien-3β-ol, 14α-methyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 24-methylpollinastanol, 14α-methyl-5α-ergost-8-en-3β-ol, 5α-ergost -8(14)-enol, 5α-ergost-8-enol, 5α-ergosta-8(14),22-dienol, 5α-ergosta-8,22-dienol, 5α-ergosta-8,14-dienol, and 5α-ergosta-7,22-dienol, in addition to the normally occurring sterols which are ergosterol, 5α-ergost-7-enol, and ergosta-5,7-dienol.The occurrence of these sterols in the treated culture indicates that AY-9944 is an effective inhibitor of the Δ8 → Δ7 isomerase and Δ14-reductase, and also inhibits introduction of the Δ22-double bond. The occurrence of 14α-dimethyl-5α-ergosta-8,25-dien-3β-ol and 14α-methyl-9β,19-cyclo-5α-ergost -25-en-3β-ol is reported for the first time in living organisms. The presence of 25-methylene sterols suggests that they, and not 24-methylene derivatives, are intermediates in the biosynthesis of sterols in C. sorokiniana.  相似文献   

10.
Rice production is of great importance to food security in Nigeria. The African rice gall midge (AfRGM), Orseolia oryzivora Harris & Gagné, is a major pest of lowland rice in Nigeria and many other Africa countries. Current management efforts are directed at integrating host plant resistance with biological agents. The type and abundance of some phytochemicals are known to affect resistance in host plants, so in this study we measured rice culm hardness, rice culm stickiness and the type and quantity of phytosterols in rice cultivars, and investigated the effects of these factors on resistance to the AfRGM. The study was conducted at 24 ± 2°C, 60 ± 5% relative humidity, and a 12 h light : 12 h dark photoperiod. Three rice cultivars were studied: one Oryza glaberimma cultivar, Tog 7442 (resistant), and two O. sativa cultivars, Cisadane (tolerant) and ITA 306 (susceptible). We found no significant differences in culm hardness and stickiness among the cultivars tested. Using gas chromatography (flame ionization detection) analysis, we identified four major phytosterols: campesterol, 24‐methylenecholesterol, stigmasterol and β‐sitosterol. 24‐Methylenecholesterol was the most abundant sterol in the resistant O. glaberimma cultivar (79.20 μg), whereas β‐sitosterol was most abundant in the two susceptible O. sativa cultivars (Cisadane, 71.27 μg; ITA 306, 66.37 μg). The comparatively high concentration of 24‐methylenecholesterol in this cultivar of O. glaberimma may be an indicator of resistance to AfRGM.  相似文献   

11.
12.
When mevalonate-[2-14C] was incubated with seeds of Pinus pinea, 23% of the label in sterols was found in trans-24-ethylidenecholesterol, 12% in a mixture of 24α- and 24β-methylcholesterol, and 65% in 24α-ethylcholesterol. However, when the radioactive substrate was lanosterol-[24-3H], label appeared only in the 24-ethylidene- (85%) and the epimeric 24-methylsterols (15%). From the ratios of labels in the ethylidene- and methyl-sterols it was possible to show that the tritium in the 24-C1 -mixture was incorporated only into the 24β-methyl epimer. The labelling patterns are consistent with a pathway to 24β-alkylsterols via Δ25(27)-sterols bypassing 24-ethylidenesterols and to 24α-alkylsterols via Δ24(28)-sterols which are isomerized to Δ24(25)-sterols prior to reduction.  相似文献   

13.
The following sterols have been isolated from the fungi, Phycomyces blakesleeanus and Agaricus campestris: ergosterol, lanosterol, 24-methylene-24,25-dihydrolanosterol and episterol. 4,4-Dimethyl-5α-ergosta-8.24(28)-dien-3β-ol and 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol have been tentatively identified. Evidence for the incorporation of label from l-methionine-[methyl-14C] into some of these sterols in P. blakesleeanus has been obtained. The significance of these sterols in ergosterol biosynthesis is discussed.  相似文献   

14.
The 4,4-dimethylsterols 4α-lanost-24-ene-3β,9α-diol-[2-3H2] and parkeol-[2-3H2] were synthesized from lanosterol and subsequently incubated with cultures of Ochromonas malhamensis. 5α-Lanost-24-ene-3β,9α-diol was converted into poriferasterol with three times the efficiency of parkeol. Clionasterol was also found to be labelled from both parkeol and 5α-lanost-24-ene-3β,9α-diol. No significant incorporation of radioactivity into sterols was obtained after feeding 5α-lanost-24-ene-3β,9α-diol to higher plants, the chlorophyte alga Trebouxia, yeast or a cell free homogenate of rat liver.  相似文献   

15.
Lenormandia prolifera and Amansia glomerata contain large amounts of 24-methylenecholesterol. These two algae belong to the Amansia group of Rhodomelaceae as do Rytiphloea tinctoria and Vidalia volubilis, which are already known to be able to alkylate sterols at C-24. Halopythis pinastroides is an exception in the Amansia group, no C-28 sterols being present in this alga.  相似文献   

16.
A new sterol isolated from the seeds of Brassica juncea has been shown to be 24-methylene-25-methylcholesterol.  相似文献   

17.
Naphthalene acetic acid increased the sterol content of mung bean hypocotyl sections mainly in the zone of elongation growth. The increased sterol synthesis can be explained by a stimulated conversion rate of cycloartenol into sterols. During the 20-hr incubation period the stigmasterol: sitosterol ratio increased considerably.  相似文献   

18.
The concentration of triarimol giving ca 50% inhibition of growth was different for each of 3 species of Chlorella [C. emersonii, 1 mg/l. (1.5 × 10?6 M), C. ellipsoidea 10 mg/l. (3 × 10?5 M), C. sorokiniana, 2 mg/l. (6 × 10?6 M)]. The total lipid of 3 species of Chlorella grown in a culture medium containing triarimol were analysed for chlorophyll, fatty acids and sterol composition. Growth rates were studied in the presence of different concentrations of triarimol. The growth rates of the 3 species were differentially inhibited by triarimol. The growth of Chlorella sorokiniana was 50% inhibited by 2 mg/l. triarimol but 20 mg/l. did not produce a cessation of growth. The greatest inhibition of growth rates and chlorophyll content was observed in Chlorella emersonii. The quantity of unsaturated fatty acids was increased by triarimol treatment in all 3 species of Chlorella. Triarimol strongly inhibited 14α-demethylation in Chlorella emersonii, and C. ellipsoidea and less in C. sorokiniana, resulting in accumulation of 14α-methyl sterols. Triarimol also inhibited the second alkylation of the side chain in C. ellipsoidea and C. emersonii. The introduction of the 22-double bond was inhibited in all 3 species of Chlorella studied. Although some differences were apparent, the effect of triarimol was quite similar to that of triparanol and AY-9944 in these 3 species of Chlorella.  相似文献   

19.
Cycloeucalenol-obtusifoliol isomerase from higher plant cells catalyses the opening of the cyclopropane ring of cycloeucalenol yielding obtusifoliol. 7-Oxo-24ξ(28)-dihydrocycloeucalenol was not a substrate but behaved like a potent inhibitor of the isomerase. The inhibition was reversible and highly specific; the inhibitor needed the presence of the 7-oxo group, the cyclopropane ring and the absence of a 4β-methyl group to be active. Other enzymes involved in plant sterol biosynthesis such as 2, 3-oxidosqualene-cycloartenol cyclase and S-adenosyl methionine cycloartenol C-24 methyltransferase were not inhibited by 7-oxo-24ξ(28)-dihydrocycloeucalenol. In vivo treatment of a suspension of bramble cells growing in a liquid medium with 7-oxo-24ξ(28)-dihydrocycloeucalenol resulted in a strong accumulation of 9β 19-cyclopropyl sterols confirming that the main cellular target of the inhibitor is the cycloeucalenol-obtusifoliol isomerase.  相似文献   

20.
13C NMR spectroscopy has demonstrated that the cycloart-25-ene-3β,24-diol isolated from the stems of Euphorbia trigona is a 1:1 mixture of the 24-epimers. This seems to be the first instance of the detection of the natural occurrence of 24-epimeric cycloart-25-ene-3β,24-diols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号