首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown in experiments on conscious rabbits that beta-endorphine, enkephalins and their synthetic analogs as well as morphine suppress respiration depending on the dose. Naloxone completely reverses this effect of the drugs. While studying the mechanism of the suppressing action of morphine-like substances on respiration in experiments on anesthesized rabbits and cats, opioid peptides and morphine were applied microiontophoretically to the neurons of the bulbar respiratory center. These cells were found to be highly sensitive to the drugs (about 60% of both respiratory and reticular neurons were suppressed by microiontophoretic application of the drugs). Naloxone prevented the effects of opioids and morphine. It is assumed that the suppressing effect of endogenous opioid peptides and their synthetic analogs on respiration is determined to a considerable degree by direct influence of morphine-like substances on the neurons of the bulbar respiratory center.  相似文献   

2.
The similarity of action of narcotic analgesics and opioid peptides is due to activation of a common opiate receptor as the primary step in initiating biochemical chains responsible for diverse morphine-like effects. The most widely used assays for opioid and analgesic activities are presented and evaluated. Approximately 180 short enkephalin analogues (di-, tri- and tetrapeptides), described in the literature, are systematized and their opioid and systemic analgesic activities compared with methionine-enkephalin and morphine as the reference compounds, respectively. The analysis of structure-opioid activity relationships among these enkephalin analogues substantiates the hypothesis that only a limited N-terminal region of the peptide molecule is essential for the binding of opioid peptides to the subclass of opiate receptors interacting with narcotic alkaloids (mu-receptors). An attempt has been made to identify minimal structural elements responsible for the mu-receptor activation. Shortening of the molecule and modification of its elements are examined with regard to the mu- and delta-receptor selectivity. It is emphasized that the aromatic structure of the C-terminal region of the peptide is not obligatory for the mu-receptor binding. Modifications of short enkephalin analogues which might confer them antagonistic properties are reviewed. The correlation between the ability of short enkephalin analogues to interact with mu-receptors and their antinociceptive properties is discussed along with some structural features pertinent to the analgesic effect after systemic administration of peptides. On the basis of this analysis, peptides containing no more than four amino acids are considered as the most probable morphine-like analgesics.  相似文献   

3.
(+)-2,9 alpha-Dimethyl-5-(m-hydroxyphenyl)morphan is the only phenylmorphan analog whose affinity for opioid kappa-receptors is greater than its affinity for opioid mu-receptors. Pharmacologically, the compound is a pure opioid antagonist devoid of agonist activity in in vivo assays of antinociception. The absolute configuration of the compound has been determined to be (1R,5S,9R) from an X-ray crystallographic study of the chloride salt. Thus, the absolute configuration corresponds to that of the atypical opioid agonist (-)-phenylmorphan while the weak atypical agonist (-)-2,9 alpha-dimethyl-5-(m- hydroxyphenyl)morphan corresponds to the potent morphine-like (+)-phenylmorphan. The preferred orientations of the phenyl ring for the two stereoisomers were determined using the molecular mechanics program MM2-87 and found to vary from that of the two parent compounds. The atypical properties of the two 9 alpha-methyl analogs is consistent with an opioid ligand model which proposes that morphine-like properties require a particular range of phenyl orientations. There was good agreement between the structure obtained from X-ray crystallography and computed with the MM2-87 program.  相似文献   

4.
Mitragynine is an indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa. We previously reported the morphine-like action of mitragynine and its related compounds in the in vitro assays. In the present study, we investigated the opioid effects of 7-hydroxymitragynine, which is isolated as its novel constituent, on contraction of isolated ileum, binding of the specific ligands to opioid receptors and nociceptive stimuli in mice. In guinea-pig ileum, 7-hydroxymitragynine inhibited electrically induced contraction through the opioid receptors. Receptor-binding assays revealed that 7-hydroxymitragynine has a higher affinity for micro-opioid receptors relative to the other opioid receptors. Administration of 7-hydroxymitragynine (2.5-10 mg/kg, s.c.) induced dose-dependent antinociceptive effects in tail-flick and hot-plate tests in mice. Its effect was more potent than that of morphine in both tests. When orally administered, 7-hydroxymitragynine (5-10 mg/kg) showed potent antinociceptive activities in tail-flick and hot-plate tests. In contrast, only weak antinociception was observed in the case of oral administration of morphine at a dose of 20 mg/kg. It was found that 7-hydroxymitragynine is a novel opioid agonist that is structurally different from the other opioid agonists, and has potent analgesic activity when orally administered.  相似文献   

5.
蛋氨酸脑啡肽( methionine-enkephaIin,Met-ENK)是具有内源性吗啡样活性物质,它是由5个氨基酸残基组成的多肽,其第5位氨基酸残基为蛋氨酸.目前,对Met-ENK的生物学功能及其作用机制的研究已取得了显著进展.就Met-ENK对免疫细胞调控、抗肿瘤作用等方面做一综述.  相似文献   

6.
A crystal of the potent opioid agonist ketobemidone [1-methyl-4-(3-hydroxyphenyl)-4-propionylpiperidine] HCl was analyzed by X-ray crystallography. The crystal was monoclinic, space group P21/n with four molecules in the unit cell. In agreement with MM2 calculations (J. Med. Chem. 25:1127–1133, 1982), the crystal contains mirror image conformers in which the phenyl ring is equatorial to the piperidine ring. The conformers are enantiomers since they are not superimposable. One conformer is predicted to be responsible for the typical morphine-like activity of the compound since it closely matches the preferred conformer of the morphine-like (+)-phenylmorphan whereas the other conformer resembles the preferred conformers of (+)-β-prodine and (?)-phenylmorphan which have atypical opioid properties and/or structure–activity relationships. The importance of considering the conformational enantiomers of a nonchiral receptor ligand in centrosymmetric crystal structures is emphasized. © 1993 Wiley-Liss, Inc.  相似文献   

7.
On purely theoretical grounds an oligopeptide was synthesized, which produced typical morphine-like effects on the guinea pig myenteric plexus-longitudinal muscle preparation and in the opiate receptor binding assay. It is a linear heptapeptide with structure HTyrGlyGlyLysMetGlyOH. This is the first opioid peptide of known structure.  相似文献   

8.
Y Sarne  O Keren  M Dalith  B A Weissman 《Life sciences》1980,27(23):2167-2173
H-endorphin, an endogenous opiate present in brain, blood and cerebrospinal fluid of rats and humans is distinguishable from both enkephalin and β-endorphin. Its distribution within the rats' brain resembles, but does not overlap that of enkephalin. Its stability and presence in blood is similar to that of β-endorphin; however, its blood level is not altered under extreme conditions (stress, hypophysectomy) which change dramatically the level of β-endorphin. H-endorphin is almost equally potent in three bio-assay systems (guinea pig ileum, mouse vas deferans and rat vas deferens) thus dissociable from both typical μ (morphine-like) and δ (enkephalin-like) ligands. The distinct characteristics of H-endorphin, enkephalin and β-endorphin, differing in their anatomical distribution, physiological response and pharmacological effect, indicate the heterogeneity of the internal opioid system which consists of at least three different mediators.  相似文献   

9.
We have previously reported the presence of IgG antibodies with a morphine-like activity in the serum of healthy individuals. The agonistic activity of IgG was dependent on their binding to the first and the third extracellular loops of the human mu opioid receptor. In this study we show that IgG antibodies obtained by immunizing rats with peptides corresponding to these two loops exhibited a similar morphine-like activity. Residues corresponding to Y(130), M(132), G(133), T(134) within the first and F(315) within the third extracellular segment were required for antibody binding and conferred to IgG a high mu-opioid selectivity.  相似文献   

10.
The basal difference in action of the studied drugs was that nootropics (phenybut in a dose of 40 mg/kg and pyracetam in a dose of 200-400 mg/kg) did not change the initial action of pain reinforcement on synchronism in responses of the cortical neurones of alert nonimmobilized rabbits by inhibitory type (coincidence of the presence and absence of impulse activity) towards its decrease, while narcotics of various types (ethanol in a dose of 4-6 mg/kg, morphine-like opiate DAGO and opioid peptide DADLE in doses of 250 mkg/kg) eliminated the action of pain reinforcement on synchronism in responses of the cortical neurones both by inhibitory and activation (time of coincidence only of the presence of impulse activity) types. These and other drugs mainly weakened the initial action of both the inhibitory and reinforced light flashes of synchronism in neurones activity both by inhibitory and activation types. There was no constant parallelism between changes of synchronization and the frequency of the cortical impulses.  相似文献   

11.
12.
13.
Multiple opioid ligands and receptors in the control of nociception   总被引:1,自引:0,他引:1  
This paper summarizes the results of recent data characterizing the role of endogenous opioid peptides and opioid receptors in nociception. In addition, evidence is given that antinociception induced by intracerebroventricular injection of opioids into mouse brain is mediated by receptors resembling those mediating the inhibitory action of these substances on the rat vas deferens (putative epsilon-receptors). The endogenous ligands for these receptor are beta-endorphin and the peptides deriving from proenkephalin A.  相似文献   

14.
M A Gillman 《Life sciences》1986,39(14):1209-1221
The concept that anesthesia and analgesia are distinct states and therefore are possibly mediated by different mechanisms is stressed. Analgesic nitrous oxide is shown to act at specific rather than non specific central nervous system sites, as well as having a large number of actions similar to morphine the classical opioid. This includes the fact that specific opioid antagonists attenuate the effects of both morphine and analgesic nitrous oxide. Evidence is also provided showing that nitrous oxide may be a partial agonist and that it may interact with the endogenous opioid system by the release of endogenous opioids, and/or by direct action at the mu, delta, sigma and kappa receptors.  相似文献   

15.
Opioid peptides, opioid receptors and mechanism of down regulation   总被引:1,自引:0,他引:1  
Biogenesis of various endogenous opioid peptides, anatomical distribution and the characteristics of multiple receptors with which they interact provides an opportunity for understanding the role of opioid systems and mechanism of opioid tolerance. Cellular and anatomical distribution of opioid receptor and their function is important for identification of neuronal systems and local network involved in initiation of drug action and subsequent development of adaptations resulting from repeated drug use. The details concerning discovery and progress in endogenous opioid peptide research and their distribution in brain have been described in this review. This review also describes opioid receptors, their distribution and mechanism of down regulation, which may be one of the causes for tolerance to opioids. Agonist induced down regulation and recent evidence for involvement of ubiquitin/proteasome system in this process has been discussed.  相似文献   

16.
Aaron Lerner's work provides a stunning set of examples of substances that help to transmit information in the brain and body. His characterization of alpha-MSH and melatonin and his sparking of interest in the further discovery of previously unknown substances have been of inestimable value for the field of neurobiology. Efforts such as those that Lerner undertook so successfully in the field of investigative dermatology now constitute a major research thrust in the field of behavioral neurochemistry and are directly related to advances in psychiatry and neurology. This review considers aspects of research on the neuropeptides, with particular attention to the endogenous opioid (morphine-like) peptides that are active on neural tissue. Neuropeptide research can be categorized broadly as efforts to discover and characterize new families and classes of active agents, investigations of their genetic and molecular processing, and studies of their relationships to behavior in animals and human beings. This review selectively considers some key research questions and strategies that arise from such research.  相似文献   

17.
It has been found that stimulation of delta-1 opioid receptors by intravenous administration of DPDPE (0.5 mg/kg) decreases the incidence of ischemic and reperfusion-induced arrhythmias and also increases myocardial tolerance to the arrhythmogenic action of epinephrine in rats. Pretreatment with a selective delta-2 agonist, DSLET, had no antiarrhythmic effect. The inhibition of the enzymatic breakdown of endogenous enkephalins by intravenous administration of acetorphan decreased the incidence of epinephrine-induced arrhythmias. Pretreatment with a selective delta opioid receptor antagonist, ICI-174.868, completely abolished this antiarrhythmic effect. Adaptation of rats to repeated immobilization stress during 12 days increased myocardial tolerance to the arrhythmogenic action of coronary artery occlusion (10 min) and reperfusion (10 min). Pretreatment with a selective delta opioid receptor antagonist, TIPP(Psy), did not abolish the antiarrhythmic effect of adaptation to immobilization stress. It seems that endogenous agonists of delta opioid receptors are not involved in the antiarrhythmic effect resulting from adaptation to stress.  相似文献   

18.
Agmatine is an endogenous amine that is synthesized following the decarboxylation of L-arginine by arginine decarboxylase. Agmatine exists in mammalian brain and has been proposed as a neurotransmitter and/or neurotransmodulator. Agmatine binds to several targets and is considered as an endogenous ligand for imidazoline receptors. This review, mainly based on our research work in the past decade, focused on the modulations by agmatine action on imidazoline receptors to opioid analgesia, tolerance and dependence, and its possible neurochemical mechanisms. We went on to propose that agmatine and imidazoline receptors constitute a novel system of modulating opioid functions.  相似文献   

19.
Quock RM  Vaughn LK 《Life sciences》2005,77(21):2603-2610
The antagonism of some effects of inhalation general anesthetic agents by naloxone suggests that there may be an opioid component to anesthetic action. There is evidence that this opioid action component is due to neuronal release of endogenous opioid peptides. The strongest evidence is provided by studies that monitor changes in the concentration of opioid peptides in the perfused brain following inhalation of the anesthetic. Indirect or circumstantial evidence also comes from studies of anesthetic effects on regional brain levels of opioid peptides, antagonism of selected anesthetic effects by antisera to opioid peptides and anesthetic-induced changes radioligand binding to opioid receptors. It is likely that some inhalation general anesthetics (e.g., nitrous oxide) can induce neuronal release of opioid peptides and that this may contribute to certain components of general anesthesia (e.g., analgesia). More definitive studies utilizing in vivo microdialysis or autoradiography in selected areas of the brain during induction and successive states of general anesthesia have yet to be conducted.  相似文献   

20.
The content of endogenous morphine-like substance in bovine pituitary and brain was determined by an opiate radioreceptor assay. The intermediate lobe was most concentrated in activity and the brain least concentrated. Most of the endorphin is obtained in a 120 000 g-min fraction from pituitary or brain homogenates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号