首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The introduction of invasive species is one of the main threats to global biodiversity, ecosystem structure and ecosystem processes. In freshwaters, invasive crayfish alter macroinvertebrate community structure and destroy macrophyte beds. There is limited knowledge on how such invasive species‐driven changes affect consumers at higher trophic levels. 2. In this study, we explore how the invasive rusty crayfish Orconectes rusticus, a benthic omnivore, affects benthic macroinvertebrates, as well as the broader consequences for ecosystem‐level trophic flows in terms of fish benthivory and trophic position (TP). We expected crayfish to decrease abundance of benthic macroinvertebrates, making most fish species less reliant on benthic resources. We expected crayfish specialists (e.g. Lepomis sp. and Micropterus sp.) to increase their benthic dependence. 3. In 10 northern Wisconsin lakes, we measured rusty crayfish relative abundance (catch per unit effort, CPUE), macroinvertebrate abundance, and C and N stable isotope ratios of 11 littoral fish species. We used stable isotope data and mixing models to characterise the trophic pathways supporting each fish species, and related trophic structure to crayfish relative abundance, fish body size and abiotic predictors using hierarchical Bayesian models. 4. Benthic invertebrate abundance was negatively correlated with rusty crayfish relative abundance. Fish benthivory increased with crayfish CPUE for all 11 fish species; posterior probabilities of a positive effect were >95%. TP also increased slightly with crayfish CPUE for some species, particularly smallmouth bass, largemouth bass, rock bass and Johnny darter. Moreover, both fish body size and lake abiotic variables explained variation in TP, while their effects on benthivory were small. 5. Rusty crayfish abundance explained relatively little of the overall variation in fish benthivory and TP. Although rusty crayfish appear to have strong effects on abundances of benthic macroinvertebrates, energy flow pathways and trophic niches of lentic fishes were not strongly influenced by invasive rusty crayfish.  相似文献   

2.
3.
Synopsis The littoral environment and fish fauna of Swartvlei, an estuarine lake, was monitored for four years during which major habitat changes occurred. Initially (1979) the zone was dominated by the submerged macrophytes Potamogeton pectinatus, Chara globularis and Lamprothamnium papulosum. This plant community was replaced by filamentous algal mats during 1980 and with the disappearance of these mats in 1981 the littoral zone was transformed into a sandy habitat. There was a highly significant decline in the numbers of fishes in the littoral zone between the macrophyte and sand phases but no significant decrease in fish biomass between the two phases. Analysis of gill net catches revealed an increase in the CPUE of the family Mugilidae between the macrophyte and sand phases but a decline in the CPUE of vegetation associated species such as Monodactylus falciformis and Rhabdosargus holubi over the same period. The increase in mullet stocks during the sand phase was attributed to epipsammic micro-algal production and the input of allochthonous detritus during the 1981 floods. The three fish species diversity indices used in this study showed minor fluctuations between the habitat phases and these variations were related to changes in the equitability of distribution between the individual species within each habitat type. The numbers of fish species recorded during the macrophyte, algal mat and sand phases varied by less than 20%. The resilience of estuarine fishes to major alterations in their environment was illustrated by the fact that all fish species recorded at the beginning of 1979 were present at the end of 1982, despite major habitat and food resource changes.  相似文献   

4.
Relative abundance and within-lake distributions of three fishes, northern redbelly dace (Phoxinus eos), finescale dace (Phoxinus neogaeus), and central mudminnow (Umbra limi), were examined using minnow traps in Tuesday Lake, a small bog lake in the Upper Peninsula, Michigan. For these species, catches in minnow traps placed at the perimeter of the lake were 21 to 52 times higher than catches in midlake traps. Variance: mean ratios of perimeter trap catches indicated that both dace species were highly aggregated while the distribution of mudminnows was less aggregated or random. Over an 11 day period during which all fish caught were removed from the lake, catch per unit effort (CPUE) of both dace species declined in response to fish removal. In contrast, CPUE for mudminnows was low initially, increased to an asymptote and then declined only in the last 5 days of the fish removal. The patterns of CPUE for mudminnows indicated that mudminnow trapability and/or activity was reduced in the presence of high densities of dace. The low abundance of dace in traps with many mudminnows suggested mudminnows avoided traps already containing dace. Throughout the removal period, CPUE provided an accurate index of dace abundance, whereas this was true for mudmnnows only after dace populations had been reduced drastically. Therefore, in any use of minnow traps to estimate populations, both spatial distributions and relative species abundance of small fishes must be taken into account.  相似文献   

5.
  1. The littoral zone of lakes is used as spawning, shelter, or feeding habitat for many fish species and hence is of key importance for overall lake functioning. Despite this, hardly any studies exist examining the long-term dynamics and response of the littoral fish community, composed mostly of juvenile fish, to environmental change. Here, we study the response of total catch per unit effort (CPUE) and individual species CPUE of such a community to 17 years of oligotrophication and examine whether the species responses can be characterised as synchronous or asynchronous.
  2. We analyse a data set of beach seine catches carried out during morning and twilight, late spring and late summer at three sites in large and deep Lake Constance from 1997 to 2014. Generalised additive mixed models were used to explore changes in CPUE of the overall community and of the most frequently occurring species, and Kendall's W test was applied to examine whether the dynamics of fish species were synchronous or asynchronous.
  3. Species-specific and total CPUE strongly differed between morning and twilight and between spring and summer indicating an important role of behavioural and life cycle adaptations of species for CPUE. In addition, also the CPUE of some species seeking shelter behind larger stones was lower at sites without these.
  4. Total CPUE did not decline suggesting the overall abundance of littoral fish was resilient to declining nutrients. In contrast, fish community composition changed strongly during the study period due to increases in some species (dace, loach, perch) and decreases in others (bream, burbot, chub, ruffe), indicating response diversity of fish to oligotrophication. The type of community dynamics was scale-dependent, whereby significantly synchronous dynamics according to Kendall's W were observed when taking seasonal variability into account. In contrast, significantly asynchronous species dynamics were observed when only the low-frequency variability of species dynamics was considered separately for spring and summer time series.
  5. Resilience of littoral fish total CPUE to oligotrophication might have important consequences for ecosystem dynamics and ecosystem services beyond the littoral zone. As small fish often impose strong predation pressure on zooplankton, their resilience might sustain a high top-down control on zooplankton resulting in a further reduction of zooplankton biomass. This could contribute to delayed food web responses and reduced growth of fish with oligotrophication.
  相似文献   

6.
7.
The interaction between native fishes and salmonids introduced in Patagonia at the beginning of the 20th Century, developed at the same time as the environmental change. The phenomenon of global warming has led to the formulation of predictions in relation to changes in the distribution of species, in the latitudinal dimension, both at intralacustrine, or small streams levels. The aim of the present work includes three main objectives: a) to compose a general and updated picture of the latitudinal distribution range of native and alien fishes, b) to analyze the historical changes in the relative abundance of Percichthys trucha, Odontesthes sp., and salmonids in lakes and reservoirs, and c) to relate the diversity and relative abundance of native and salmonid fishes to the environmental variables of lakes and reservoirs. We analysed previous records and an ensemble of data about new locations along the northern border of the Patagonian Province. We compared current data about the relative abundance of native fishes and salmonids in lakes and reservoirs, with previous databases (1984–1987). All samplings considered were performed during spring-summer surveys and include relative abundance, as proportions of salmonids, P. trucha, and Odontesthes sp. For the first time, we found changes in fish assemblages from twenty years back up to the present: a significant decline in the relative abundances of salmonids and an increase of P. trucha. We studied the association between the diversity and relative abundance of native and salmonid fishes and the environmental variables of lakes and reservoirs using Canonical Correspondence Analysis. Relative abundance showed mainly geographical cues and the diversity relied largely on morphometric characteristics. Relative abundance and diversity seem to have a common point in the lake area, included into the PAR concept. Native abundance and alien diversity were negatively related with latitude. Greater native diversity was observed in lakes with high PAR compared with salmonids. Historical changes such as southward dispersion, relative abundance changes, and geographical patterns for relative abundance and diversity are basic concepts needed not only in future research but also in management design for Patagonian fish populations.  相似文献   

8.
1. Shallow lakes in the Boreal Transition Zone (BTZ) in Alberta, Canada are naturally productive systems that provide important breeding and moulting habitat for many waterfowl (Anseriformes). To examine the relative importance of biotic and abiotic factors on waterfowl population densities, species richness and community composition, we surveyed 30 shallow lakes and evaluated the relationships among fish communities, lake characteristics and waterfowl in both breeding and moulting habitat. Shallow lakes were either fishless (n = 15), contained only small‐bodied fishes (n = 10) or contained large‐bodied, mostly predatory, fish in addition to small‐bodied fish (n = 5). 2. Environmental factors, including water colour, submerged aquatic vegetation, lake area and potassium, explained 24.3% of the variation in breeding waterfowl communities. Fish assemblage contributed independently to a small but significant proportion (13.4%) of the variation, while 13.8% of the explained variation was shared between environmental factors and fish assemblage. In total, 51.5% of the variation in breeding waterfowl communities was explained. 3. Overall, 55.5% of the total variation in moulting waterfowl communities was explained. Environment alone [especially total phosphorus, lake area, maximum depth and dissolved organic carbon (DOC)] and variation shared by fish and environment similarly accounted for most of the explained variation in moulting waterfowl communities (21.7% and 25.7% respectively), while fish assemblage was only one‐third as important (8.1%). 4. Both breeding and moulting waterfowl densities increased with lake productivity, even in eutrophic and hypereutrophic lakes. Breeding waterfowl density was also twice as great in fishless lakes than in lakes with fish, after accounting for lake area. 5. Certain waterfowl taxa were linked to fishless lakes, especially in the moulting season. Canvasback and moulting ring‐necked ducks were linked to small‐bodied fish lakes, whereas moulting common goldeneye were indicators of large‐bodied fish lakes. Knowledge of fish presence and species composition can therefore help guide conservation and management of waterfowl habitat in western Canada. Our results suggest that management efforts to maintain the most productive waterfowl habitat in the BTZ should focus on smaller, shallow, fishless lakes, particularly given that larger fish‐bearing systems have greater regulatory protection.  相似文献   

9.
10.
Effects of elevated turbidity on shallow lake fish communities   总被引:1,自引:0,他引:1  
Synopsis We compared the fish communities of two shallow lakes in the lower Waikato River basin, North Island, New Zealand, to determine the effects of elevated suspended solids (SS) and collapse of submerged macrophytes. Lake Waahi was turbid (20–40 g m-3 SS) and devoid of submerged macrophytes whereas Lake Whangape was clearer (5 g m-3 SS) and dominated by submerged macrophytes. The lakes had similar fish species richness and had nine major species in common; representing eight families including Anguillidae, Retropinnidae, Galaxiidae, Eleotridae, Mugilidae, Ictaluridae, Poeciliidae, and Cyprinidae (two species). The only major fish that was absent from Lake Waahi was a lacustrine form of the common smelt, Retropinna retropinna, which disappeared after the lake became turbid in the late 1970s. CPUE, condition, and size of most species in Lake Waahi were similar to, or greater than, those in Lake Whangape. Lake Whangape clearly exceeded Lake Waahi only for CPUE of two species. Within Lake Whangape two species displayed significantly greater condition, and one species greater size, in a turbid arm of the lake than in the main basin. Apart from lacustrine Retropinna retropinna, the fish in these lakes appear well adapted to cope with, or to avoid, the direct toxic effects of suspended and settleable solids on sensitive early developmental stages. In Lake Waahi loss of cover and food provided by submerged macrophytes appears to have been compensated for by increased turbidity and an associated increase in the biomass of the mysid, Tenagomysis chiltoni (a major prey item).  相似文献   

11.
Here, we present a gillnet survey of Lake Liambezi a 370 km2 shallow ephemeral floodplain lake situated in north-eastern Namibia, which is fed irregularly by the upper Zambezi and Kwando Rivers during years of high flooding. The lake dried up in 1985 and, with the exception of sporadic minor annual inundation events, remained dry until 2007. We describe the temporal succession of fish species over an 8 year period from initial inundation 2007 to maturation in 2014. The succession of the fish community did not follow the typical pattern of opportunistic strategists during colonisation, to periodic strategists that are eventually succeeded by equilibrium strategists. Instead, the evolution of the fish community was characterised by three distinct phases. The first phase involved the inundation and colonisation of the lake in 2007, followed by its decline until the floods that filled the lake in 2009. During this phase the lake was colonised by fishes from the adjacent upper Zambezi and Chobe River floodplains. Fish communities predominantly comprised floodplain specialists including the barbs Enteromius paludinosus and Enteromius poechii, the mormyrid Marcusenius altisambesi and catfishes Schilbe intermedius and Clarias gariepinus. The filling of the lake in the March 2009 floods marked the beginning of the second, successional phase. The barbs declined in abundance and the alestid Rhabdalestes maunensis underwent explosive population growth between 2009 and 2010, but populations crashed equally rapidly and were replaced by Brycinus lateralis which, together with S. intermedius went on to dominate the fish community 2011–2014. Larger, slower growing tilapiine cichlids increased steadily in abundance and became the dominant components in a 2700 t y–1 artisanal fishery that developed on the lake. The fish community in the ephemeral Lake Liambezi is clearly influenced by numerous factors including connectivity, lake level fluctuations, competition and the effects of fishing, which may disrupt typical succession processes in floodplain ecosystems.  相似文献   

12.
1. Human activities affect fish assemblages in a variety of ways. Large‐scale and long‐term disturbances such as in‐stream dredging and mining alter habitat and hydrodynamic characteristics within rivers which can, in turn, alter fish distribution. Habitat heterogeneity is decreased as the natural riffle–pool–run sequences are lost to continuous pools and, as a consequence, lotic species are displaced by lentic species, while generalist and invasive species displace native habitat specialists. Sediment and organic detritus accumulate in deep, dredged reaches and behind dams, disrupting nutrient flow and destroying critical habitat for habitat specialist species. 2. We used standard ecological metrics such as species richness and diversity, as well as stable isotope analysis of δ13C and δ15N, to quantify the differences in fish assemblages sampled by benthic trawls among dredged and undredged sites in the Allegheny River, Pennsylvania, U.S.A. 3. Using mixed‐effects models, we found that total catch, species richness and diversity were negatively correlated with depth (P < 0.05), while species richness, diversity and proportion of species in lithophilic (‘rock‐loving’) reproductive guilds were lower at dredged than at undredged sites (P < 0.05). 4. Principal components analysis and manova revealed that taxa such as darters in brood hider and substratum chooser reproductive guilds were predominantly associated with undredged sites along principal component axis 1 (PC1 and manova P < 0.05), while nest spawners such as catfish and open substratum spawners including suckers were more associated with dredged sites along PC2 (P < 0.05). 5. Stable isotope analysis of δ13C and δ15N revealed shifts from reliance on shallow water and benthic‐derived nutrients at undredged sites to reliance on phytoplankton and terrestrial detritus at deep‐water dredged sites. Relative trophic positions were also lower at dredged sites for many species; loss of benthic nutrient pathways associated with depth and dredging history is hypothesised. 6. The combination of ecological metrics and stable isotope analysis thus shows how anthropogenic habitat loss caused by gravel dredging can decrease benthic fish abundance and diversity, and that species in substratum‐specific reproductive guilds are at particular risk. The effects of dredging also manifest by altering resource use and nutrient pathways within food webs. Management and conservation decisions should therefore consider the protection of relatively shallow areas with suitable substratum for spawning for the protection of native fishes.  相似文献   

13.
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth), down the fore reef slope to the reef base (10-30 m depth) then across the adjacent continental shelf (30-110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate.  相似文献   

14.
During the flood season of 1992–1993, 139 species of fishes were collected from a floodplain lake system in the central Amazon Basin. Fish species distribution was examined relative to abiotic variables in seven vegetation strata on Marchantaria Island, Solimões River. Both environmental variables and species distributions were influenced by a river channel to floodplain-interior gradient. Species diversity was significantly higher in vegetated areas than in unvegetated areas, with deeper water Paspalum repens stands harbouring the highest diversity. As a result, species richness and catches were positively related to habitat complexity, while catch was also negatively related to dissolved oxygen (DO) and water depth. Low DO and shallow waters appeared to act as a refuge from predation. Fish assemblages were related to water chemistry, but species richness was not. Canonical correspondence analysis provided evidence that floodplain fish assemblages formed by the 76 most common species were influenced by physical variables, macrophyte coverage and habitat complexity, which jointly accounted for 67% of the variance of fish species assemblages. Omnivores showed no pattern relative to the river channel to floodplain-interior gradient while detritivores were more likely to be found at interior floodplain sites and piscivores closer to the river. Piscivores could be further separated into three groups, one with seven species associated with free-floating macrophytes in deep water, a second with five species found in shallow waters with rooted grasses and a third with six open water orientated species. The results suggest that fish assemblages in the Amazon floodplain are not random associations of species.  相似文献   

15.
Synopsis The coastal fish assemblages of Wemindji, eastern James Bay, were studied in 1987 and 1988 to describe seasonal utilization of the Maquatua River estuary and the adjacent coastal waters by marine and anadromous fishes. Fish diversity was low (11 sp.) and experimental gill net catches were highly variable between sites in the estuary and coastal waters, and also seasonally at a given site. During summer, the estuarine fishes were numerically dominated by two marine species, the fourhorn sculpin,Myoxocephalus quadricornis, and the slender eelblenny,Lumpenus fabricii, and also by juvenile cisco,Coregonus artedii, and juvenile lake whitefish,C. clupeaformis. In coastal waters, three marine species were abundant: the shorthorn sculpin,M. scorpius, the arctic sculpin,M. scorpioides and the Greenland cod.Gadus ogac. In contrast with the estuary, large (> 270 mm) cisco and lake whitefish were abundant in coastal waters indicating extensive movements of these species in James Bay during the summer. Distribution patterns were influenced by a combination of physical conditions (salinity and temperature) and biological characteristics (habitat choice, migration and reproduction) depending on the season.  相似文献   

16.
1. Classification of European lake fish assemblages can be based on fish‐assemblage structure or morphological, geographical, physical and chemical lake attributes. However, substantial gaps in knowledge exist with respect to the correspondence between both classification approaches. 2. Here, we compiled fish assemblage data from 165 lakes situated in the European ‘Central Plains’ ecoregion. Cluster analysis of fish abundances was performed to compare fish assemblage types of the entire ecoregion with those from previous country‐specific studies. Nonparametric group comparisons, classification trees and partial canonical ordinations were used to infer the correspondence between fish assemblage types and morphology, geographical position and nutrient concentration of the lakes. 3. Three distinct fish assemblages were revealed: vendace (Coregonus albula), ruffe (Gymnocephalus cernuus) and roach (Rutilus rutilus) lake types. Both latitude and lake depth were the best determinants of lake type, but total phosphorus (TP) concentrations were also important. Vendace lakes were deep and had low TP concentrations, whereas the shallower ruffe and roach lakes had higher TP values. Roach lakes were more frequent in the north‐west area of the ecoregion, whereas ruffe lakes were more often found south of the Baltic Sea. 4. Controlling for the influence of nutrient concentration showed that lake morphology and geographical position were important determinants of fish assemblages. However, the variance explained was low (<20%), implying that biological interactions may also be important in forming the lake‐specific fish assemblages. 5. The results suggest that fish assemblages differ between deep and shallow lakes, and between the north‐west and south‐east locations within the Central Plains ecoregion. Accordingly, establishment of depth‐related lake morphotypes is needed, and the European ecoregions recommended to be used in evaluation systems according to the Water Framework Directive seem to be too coarse to reflect the subtle differences of fish species richness along geographical gradients.  相似文献   

17.
In order to establish a fish-based typology of Italian lakes and identify possible reference and indicator fish species for each lake type, we analysed historical data on fish assemblages of all Italian natural lakes >0.5 km2 from the period prior to the major decline in water quality in the 1950s. General linear regression models showed the ecoregion and lake altitude being the best predictors of fish species richness. The number of species was significantly higher in the Alpine than in the Mediterranean ecoregion. Among Alpine lakes, the number of fish species increased significantly with lake volume whilst decreased with altitude. In the Mediterranean lakes, none of the selected parameters was significant. Cluster analysis of fish assemblages (presence/absence) divided the lakes of the Alpine and Mediterranean ecoregions into four and two types, respectively. Pike (Esox lucius), rudd (Scardinius erythrophthalmus) and tench (Tinca tinca) were the main indicator species for the small and mostly shallow lakes in both the Alpine (Type 1) and Mediterranean (Type 6) ecoregions, minnow (Phoxinus phoxinus) for the alpine high altitude lakes (Type 2) and landlocked shad (Alosa fallax lacustris), European whitefish (Coregonus lavaretus) and burbot (Lota lota) for the large and very deep alpine lakes (Type 4). The European whitefish was the only indicator species for the deep Mediterranean lakes (Type 5). These species and associated fish assemblages may be useful indicators in future assessments of the ecological status of Italian lakes according to the European Directives (2000/60/EC and 2008/105/EC).  相似文献   

18.
The variability in size structure and relative abundance (CPUE; number of fish ≥200 mm total length, LT, collected per hour of electrofishing or trammel netting) of three native Colorado River fishes, the endangered humpback chub Gila cypha, flannelmouth sucker Catostomus latipinnus and bluehead sucker Catostomus discobolus, collected from electrofishing and trammel nets was assessed to determine which gear was most appropriate to detect trends in relative abundance of adult fishes. Coefficient of variation (CV) of CPUE ranged from 210 to 566 for electrofishing and 128 to 575 for trammel netting, depending on season, diel period and species. Mean CV was lowest for trammel nets for humpback chub (P = 0·004) and tended to be lower for flannelmouth sucker (P = 0·12), regardless of season or diel period. Only one bluehead sucker >200 mm was collected with electrofishing. Electrofishing and trammel netting CPUE were not related for humpback chub (r = ?0·32, P = 0·43) or flannelmouth sucker (r = ?0·27, P = 0·46) in samples from the same date, location and hour set. Electrofishing collected a higher proportion of smaller (<200 mm LT) humpback chub (P < 0·001), flannelmouth suckers (P < 0·001) and bluehead suckers (P < 0·001) than trammel netting, suggesting that conclusions derived from one gear may not be the same as from the other gear. This is probably because these gears fished different habitats, which are occupied by different fish life stages. To detect a 25% change in CPUE at a power of 0·9, at least 473 trammel net sets or 1918 electrofishing samples would be needed in this 8 km reach. This unattainable amount of samples for both trammel netting and electrofishing indicates that detecting annual changes in CPUE may not be practical and analysis of long‐term data or stock assessment models using mark‐recapture methods may be needed to assess trends in abundance of Colorado River native fishes, and probably other rare fishes as well.  相似文献   

19.
Synopsis Young-of-the-year fish communities in naturally vegetated sites were compared with those inhabiting nearby sites where lakeshore development (i.e., construction of homes, boat docks, and beaches) reduced nearshore macrophyte species richness and abundance. The study was conducted in a 2266 hectare, glacially formed, eutrophic lake in northwestern Iowa during the summers of 1987 and 1988. Study sites were divided into 3 depth zones, and fishes were collected by seining (0–1 m), plexiglass traps (1–2 m), and a nonclosing Tucker trawl (2–3 m). Species richness and total fish abundance were consistently greater in natural than in developed sites in both nearshore (0–1 m) and intermediate (1–2 m) depth zones, but differed little between natural and developed sites in the offshore (2–3 m) depth zone. Nearly 50% of the species sampled, including yellow perch Perca flavescens and bluegill Lepomis macrochirus, inhabited limnetic areas as larvae before migrating inshore as juveniles. Eighteen of the 20 fish species collected as juveniles were in greater abundance in natural than in developed sites. Smallmouth bass Micropterus dolomieui was the only game species consistently found in equal or greater abundance in developed sites. Within all sites, juvenile fishes were generally most abundant where macrophyte abundance and species richness were greatest. Findings from this study demonstrate the importance of nearshore aquatic vegetation to fishes during their first summer of life. If nearshore vegetation beds of lakes continue to be regarded as a nuisance and indiscriminately removed, important fish nursery habitat will be lost. The short-term result will likely be reduced year-class strength of vegetation-dependent species. More importantly, the long-term effects will be changes in fish community richness and composition which will, in turn, alter the lake's fishery.  相似文献   

20.
We explored patterns of habitat use and movement of three declining fish species intolerant to eutrophication in a north-temperate (Minnesota, USA) glacial lake: the blackchin shiner Notropis heterodon, blacknose shiner Notropis heterolepis, and banded killifish Fundulus diaphanus. We marked individuals with elastomer tags and estimated movement distances of recaptured individuals. Estimated home ranges for all species ranged from 3,264 to 19,525 m2, which covered 0.8 and 5.0% of our study lake’s total littoral area. Individuals of all species traveled to opposite ends of the lake over periods of time as short as 24 h. Using Geographic Information System (GIS) overlays and generalized additive models, we found fish species occurrences to be positively associated with macrophyte biovolume greater than 20% and with a high probability of occurrence of Chara. The magnitude of main and interaction effects varied among years and species. Overall, blackchin shiner occurrence was most strongly associated with biovolume. In other species by year combinations, biovolume and Chara explained varying degrees of variance in fish probability of occurrence. Our results suggest that controlling lake eutrophication and protecting of refuge areas of dense macrophytes and Chara may be needed to conserve these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号