首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock compromises development of preimplantation bovine embryos and the percentage of blastomeres labeled as TUNEL-positive. It was hypothesized that TUNEL labeling represents apoptosis and that apoptosis after heat shock is beneficial for continued embryonic development. To test these hypotheses, experiments were performed with z-DEVD-fmk, an inhibitor of group II caspases, on heat shock responses of embryos > or =16-cell stage at day 4 after insemination. Heat shock of 41 degrees C for 9 h increased group II caspase activity and the proportion of TUNEL positive cells; z-DEVD-fmk blocked these effects. The reduction in development of embryos exposed to heat shock for 6-9 h was magnified in the presence of z-DEVD-fmk. Results indicate that group II caspases mediate heat-induced apoptosis in bovine embryos and that inhibition of these caspases has a detrimental effect on embryonic resistance to heat shock. Apoptosis can be viewed as an adaptative mechanism to allow embryonic survival and development following stress.  相似文献   

2.
Apoptosis is a form of cell death that can function to eliminate cells damaged by environmental stress. One stress that can compromise embryonic development is elevated temperature (i.e., heat shock). For the current studies, we hypothesized that heat shock induces apoptosis in bovine embryos in a developmentally regulated manner. Studies were performed to 1) determine whether heat shock can induce apoptosis in preimplantation embryos, 2) test whether heat-induced apoptosis is developmentally regulated, 3) evaluate whether heat shock-induced changes in caspase activity parallel patterns of apoptosis, and 4) ascertain whether exposure to a mild heat shock can protect embryos from heat-induced apoptosis. As determined by TUNEL reaction, exposure of bovine embryos > or =16 cells on Day 5 after insemination to 41 or 42 degrees C for 9 h increased the percentage of cells undergoing apoptosis. In addition, there was a duration-dependent increase in the proportion of blastomeres that were apoptotic when embryos were exposed to temperatures of 40 or 41 degrees C, which are more characteristic of temperatures experienced by heat-stressed cows. Heat shock also increased caspase activity in Day 5 embryos. However, heat shock did not induce apoptosis in 2- or 4-cell embryos, nor did it increase caspase activity in 2-cell embryos. The apoptotic response of 8- to 16-cell-stage bovine embryos to heat shock depended upon the day after insemination that heat shock occurred. When 8- to 16-cell embryos were collected on Day 3 after insemination, heat shock of 41 degrees C for 9 h did not induce apoptosis. In contrast, when 8- to 16-cell embryos were collected on Day 4 after insemination and exposed to heat shock, there was an increase in the percentage of cells undergoing apoptosis. Exposure of 8- to 16-cell embryos at Day 4 to a mild heat shock of 40 degrees C for 80 min blocked the apoptotic response to a subsequent, more-severe heat shock of 41 degrees C for 9 h. In conclusion, apoptosis is a developmentally acquired phenomenon that occurs in embryos exposed to elevated temperature, and it can be prevented by induced thermotolerance.  相似文献   

3.
Although sensitive to various disrupters, pre-implantation embryos possess some cellular cytoprotective mechanisms that allow continued survival in the face of a deleterious environment. For stresses such as heat shock, embryonic resistance increases as development proceeds. Present objectives were to determine whether (1) arsenic compromises development of pre-implantation bovine embryos, (2) developmental changes in embryonic resistance to arsenic mimic those seen for resistance to heat shock, and (3) developmental patterns in induction of apoptosis by arsenic are correlated with similar changes in resistance of embryos to inhibitory effects of arsenic on development. Bovine embryos produced by in vitro fertilization were exposed at the two-cell stage or at day 5 after insemination (embryos > or = 16-cells in number) to either sodium arsenite (0, 1, 5, or 10 microM) or heat shock (exposure to 41 degrees C for 0, 3, 4.5, 6, or 9 hr). Arsenic induced apoptosis and increased group 2 caspase activity for embryos at the > or = 16-cell stage, but not for embryos at the two-cell stage. In contrast to these developmental changes in apoptosis responses, exposure to arsenic reduced cell number 24 hr after exposure for both two-cell embryos and embryos > or = 16-cells. Similarly, the percentage of embryos that developed to the blastocyst stage at day 8 after fertilization was reduced by arsenic exposure at both stages of development. Heat shock, conversely, reduced development to the blastocyst stage when applied at the two-cell stage, but not when applied to embryos > or = 16-cells at day 5 after insemination. In conclusion, arsenic can compromise development of bovine pre-implantation embryos, the temporal window of sensitivity of embryos to arsenic is wider than for heat shock, and cellular cytoprotective responses that embryos acquire for thermal resistance are not sufficient to cause increased embryonic resistance to arsenic exposure. It is likely that despite common cellular pathologies caused by arsenic and heat shock, arsenic acts to reduce development in part through biochemical pathways not activated by heat shock. Moreover, the embryo does not acquire significant resistance to these perturbations within the time frame in development examined.  相似文献   

4.
Two studies were performed to determine if repeated exposure of the avian egg to microwaves can alter metabolism, temperature, and growth rate of embryos. Another aim was to supplement conventional heating with microwave heating and provide an optimal temperature for growth. Japanese quail (Coturnix coturnix japonica) eggs were exposed from day 1 through 15 of incubation (8 h/day) to sham or microwave (2,450 MHz) irradiation. Microwave exposures were at two power densities, 5 or 20 mW/cm2, and at three ambient temperatures (Tas), 30.0, 33.1, or 35.4 degrees C. Specific absorption rates for unincubated and 15-day-old incubated eggs were, respectively, 0.76 and 0.66 W kg-1 mW-1 cm-2 (i.e., 3.8 and 3.3 W/kg at 5 mW/cm2 and 15.2 and 13.2 W/kg at 20 mW/cm2). Eggs were concurrently sham exposed at each of five Tas, ranging from 27.9 to 37.5 degrees C. Tests were conducted during the 16th day of incubation (i.e., 1 day post-treatment), in the absence of microwaves, to determine metabolic rate of embryos and internal and external egg temperatures at different Tas. Repeated exposures to microwaves at 5 and 20 mW/cm2 at the same Ta (30 degrees C) increased wet-embryo mass on the 16th day by an average, respectively, of 9% and 61% when compared with predicted masses for embryos exposed at the same Ta in the absence of microwave radiation. There was no reliable indication, from post-treatment tests and comparisons with control embryos of similar mass, that repeated exposure to microwave radiation resulted in abnormal physiological development. Microwave radiation can be used to increase egg temperature and embryonic growth rate at Tas below normal incubation level without altering basic metabolic and thermal characteristics of the developing bird.  相似文献   

5.
We investigated the effects of heat shock on developmental competence of bovine embryos and intracellular oxidative state. After in vitro fertilization, embryos were exposed to heat shock at 41 degrees C for 6 hr on days 0, 2, 4, and 6, respectively. On day 2, cleavage rate was not significantly different in all groups. However, the percentage of embryos developing to blastocyst stage after exposure to heat shock on day 0 (18.8 +/- 4.3%) and day 2 (23.6 +/- 3.7%) were significantly decreased compared with control (37.5 +/- 4.0%), day 4 (40.0 +/- 7.4%), and day 6 (38.1 +/- 2.0%). In addition, the total cell number of blastocysts was significantly decreased by heat shock on day 0 (107.5 +/- 6.6) and day 2 (112.8 +/- 5.7) compared with the control (143.2 +/- 9.4). To evaluate intracellular oxidative state by heat shock, embryos exposed to heat shock on days 0, 2, 4, and 6 were incubated with 2',7'-dichlorodihydrofluorescein diacetate (DCHFDA) and fluorescence of oxidized DCHFDA by reactive oxygen species (ROS) was detected under fluorescent microscope. The intensity of fluorescence was significantly increased when embryos were exposed to heat shock on days 0 and 2. However, heat shock on day 4 and day 6 did not increase the fluorescence intensity. These results indicate that (1) heat shock to earlier stage embryos causes a decrease in development to blastocysts and cell proliferation and (2) the decrease in development by heat shock could be involved in an increase of intracellular oxidative stress. Mol. Reprod. Dev. 67: 77-82, 2004.  相似文献   

6.
The effects of ethylenethiourea (ETU) were investigated using rat (Wistar-imamichi) embryos cultured from days 11 to 13 of gestation or cultured rat embryonic cells extracted on day 11. Malformations in cultured embryos at the concentration of 30 micrograms/ml of ETU were found in the head and tail, which were severely affected, as well as the limb and face. All embryos exposed to 150 and 300 micrograms/ml of ETU had malformed heads, tails, limbs, and facial configurations. Protein contents of the cultured embryos were decreased dose-dependently at the concentrations ranging from 30 to 300 micrograms/ml. In the histological studies of the cultured embryos with ETU, thinner neuroepithelium in head was observed. In the embryonic cells extracted on day 11 of gestation, ETU dose-dependently inhibited the differentiation of midbrain (MB) cells into neurons and that of limb bud (LB) cells into chondrocytes at the concentrations ranging from 30 to 600 micrograms/ml of ETU. The concentrations of ETU that inhibited the production of differentiated foci by 50% (IC50) were 170 micrograms/ml in LB cells of day 11, and greater than 600 micrograms/ml in LB cells on day 12 of development. Therefore, differentiation of MB cells was more sensitive to ETU than the differentiation of LB cells. These results indicated that there was a reasonable correlation of ETU induced changes in cultured whole embryos and embryonic cells.  相似文献   

7.
In Ambystoma mexicanum, recessive mutant gene c results in an absence of embryonic heart function because of altered influences from surrounding tissues (Humphrey, 1972). The present light and electron microscope study compares heart development in normal and mutant embryos from Harrison stage 34 or 6 days (at which normal heart beat initiates) through stage 41 or 25 days (at which mutant embryos die). The hearts display increasing differences as development progresses, and by stage 41 mutant abnormalities are striking. The normal myocardium shows organized sarcomeres at stage 34 and numerous intercalated discs subsequently appear. By stage 41, the normal myocardium is composed of highly differentiated muscle cells and shows extensive trabeculation. The mutant myocardium throughout development remains only one cell layer thick with no indication of developing trabeculae. Mutant cells at stage 34 have a few 140 Å and 60 Å filaments along with what appear to be Z bodies. A partial organization of myofibrillar components is occasionally noted at stages 38–41; however, distinct sarcomeres are not apparent and intercalated discs are rarely seen. In general the mutant cells appear less differentiated than usual and in many respects are reminiscent of pre-heart-beat normal cells. Although most mutant cells show images characteristic of pathological conditions (e.g., pleomorphic mitochondria, membranous whorls, and numerous autophagic vacuoles), selective myocardial cell death, a phenomenon associated with normal trabeculation, is not evident. It is clear that gene c, in homozygous condition, results in an altered pattern of heart cell differentiation. The mutation, by way of abnormal inductive processes, appears to affect the synthesis and organization of heart contractile proteins.  相似文献   

8.
We used light microscopy to study placental structure of the lizard Sceloporus mucronatus throughout 6 months of embryonic development. Three stages of placental development could be assigned to embryos based on the arrangement of the extraembryonic membranes. A highly vascular choriovitelline placenta was present in the embryonic hemisphere and a nonvascular bilaminar omphalopleure covered most of the abembryonic hemisphere of the egg during embryonic Stages 10-28. A chorioallantoic placenta replaced the choriovitelline placenta by embryonic Stage 29 and an omphaloplacenta covered the abembryonic hemisphere at this stage. The combination of these two placental types occurred in Stage 29-36 embryos. The final stage of placentation, embryonic Stages 37-40, was characterized by an omphalallantoic placenta in the abembryonic hemisphere and a chorioallantoic placenta in the embryonic hemisphere of the egg. The choriovitelline and chorioallantoic placentae are well vascularized, with closely apposed maternal and embryonic blood vessels. These structures are the most likely sites of respiratory exchange. In contrast, the omphaloplacenta and omphalallantoic placentae contain cuboidal or columnar epithelia and these structures may function in histotrophic exchange. Placentation of S. mucronatus is similar to that of predominantly lecithotrophic species in other squamate lineages suggesting that the evolution of this placental morphology is a response to similar factors and is independent of phylogeny.  相似文献   

9.
The objective of this study was to compare developmental capacity of rabbit chimeric embryos and the allocation of the EGFP gene expression to the embryoblast (ICM) or embryonic shield. We produced chimeric embryos (TR< >N) by synchronous transfer of two or three blastomeres at the 16-cell stage from transgenic (TR) into normal host embryos (N) at the same stage. In the control group, two to three non-transgenic blastomeres were used to produce chimeric embryos. The TR embryos were produced by microinjection of EGFP into both pronuclei of fertilized rabbit eggs. The developmental rate and allocation of EGFP-positive cells of the reconstructed chimeric embryos was controlled at blastocyst (96 h PC) and embryonic shield (day 6) stage. All chimeric embryos (120/120, 100%) developed up to blastocyst stage. Using fluorescent microscope, we detected green signal (EGFP expression). In 90 chimeric (TR< >N) embryos (75%). Average total number of cells in chimeric embryos at blastocyst stage was 175+/-13.10, of which 58+/-2.76 cells were found in the ICM area. The number of EGFP-positive cells in the ICM area was 24+/-5.02 (35%). After the transfer of 50 chimeric rabbit embryos at the 16-cell stage, 20 embryos (40%) were flushed from five recipients on day 6 of pregnancy, of which five embryos (25%) were EGFP positive at the embryonic shield stage. Our results demonstrate that transgenic blastomeres in synchronous chimeric embryos reconstructed from TR embryos have an ability to develop and colonize ICM and embryonic shield area.  相似文献   

10.
Synopsis Embryos in specific stage of the estuarine teleost, Fundulus heteroclitus, were exposed to mercuric chloride (MC) and methylmercuric chloride (MMC) under several distinct treatment conditions. Four-eight cell stage eggs (0-day old) were exposed for 4 days (continuous), 2 days and one day to each mercury compound. One-day old (mid-blastula), 2-day old (mid-neurula) and 5-day old (beating heart) embryos were exposed 4 days to MC and MMC. Mortality for the four days immediately following the initiation of exposure was the embryonic response measured. Under most exposure conditions to the 4–8 cell eggs, progressive and significant reductions in survival were observed at all concentrations above 40 and 30 gHg++l–1 as MC and MMC, respectively. Reducing the duration of exposure to 1 day most significantly increased the survival potential of the 4–8 cell eggs. For all exposure treatments to the 4–8 cell eggs, significant differences in survival, between eggs exposed to MC and MMC, were determined at 40, 60 and 80 gHg++l–1, indicating the presence of compound-dependent response differences. In all cases demonstrating response differences between MC and MMC exposed embryos, survival was significantly lower following exposure to MMC. Survival of embryos was progressively increased when the initiation of continuous exposure (4 days) was delayed 1, 2 and 5 days after fertilization. As a result, compound-dependent response differences were progressively shifted to higher He++ concentrations. For both MC and MMC, survival of 1-day old embryos exposed for 4 days was greater than that of 0-day old eggs exposed for 1 day. Of the embryonic stages examined, it appears that the earlier cleavage stages are the most sensitive to mercury intoxication.  相似文献   

11.
Freezability of porcine blastocysts at different peri-hatching stages   总被引:8,自引:0,他引:8  
The freezability of porcine peri-hatching stage blastocysts was investigated by the cryopreservation of embryos at -196 degrees C with 1.5 M glycerol and by thawing, followed by in vitro culture. Of 66 expanded blastocysts frozen, 34 (51.5%) developed in vitro after thawing, while only 2 (6.7%, P<0.05) of 30 earlier stage blastocysts survived freezing. After freezing of 85 hatched blastocysts with an embryonic diameter of 150 to 300 mum, 59 (69.4%) surviving embryos were obtained, whereas none of the 78 advanced staged hatched blastocysts (>300 mum) survived the cryopreservation. High post-thaw survival (32 39 , 82..1%) was obtained with in vitro-hatched blastocysts precultured in Whittingham's M-16 medium containing 12mg/ml bovine serum albumin (BSA). In contrast, none of the 14 in vitro-hatched blastocysts precultured in the M-16 medium supplemented with 15% fetal calf serum (FCS) survived freezing. Similarly 51 of 56 hatced blastocysts (diameter = 150 to 300 mum) precultured in the M-16 medium supplemented with BSA survived cryopreservation, compared with 3 of 26 embryos precultured in the medium supplemented with FCS (P<0.001). Because both groups of the embryos precultured with BSA or FCS possessed normal ability to develop after transfer (developmental rate = 61.1 and 93.3%), the improved freezability of the embryos precultured with BSA may relate to a favorable change of embryonic cell membranes during the culture period. It was concluded that in vitro-hatched blastocysts precultured in medium containing BSA and in vivo-hatched blastocysts at the appropriate stage of development could both tolerate deep freezing to -196 degrees C; however, a differece in the freezability of embryos between breeds of pig was suggested from a further experiment performed with German Landrace embryos.  相似文献   

12.
To reduce the number of animals required for controlled studies of marmoset oocytes and early embryos, a superovulation protocol was developed for the common marmoset. Females were given up to 50 i.u./day recombinant human follicle stimulating hormone (FSH)--(r-hFSH) for 6 days. Ovaries were visualized by a modified laparoscopic technique and follicular aspiration was performed using a needle and suction apparatus inserted directly through an otoscope speculum. The number of follicles + ovulation points (+/- S.E.) was 2.9 (+/- 0.2) in controls and 14.1 (+/- 1.6; P < or = 0.001) in the 50 i.u. r-hFSH per day animals. Oocytes, typically at the germinal vesicle stage at collection, extruded a first polar body within 26 hours. In vitro fertilization was performed and embryos developed to the hatched blastocyst stage (34%). With many high quality oocytes and the ability to synchronize cycles, the marmoset is a valuable primate model for examining nuclear reprograming and early embryonic events.  相似文献   

13.
The effect of high concentrations of cryoprotectants on the passage of bovine viral diarrhea virus (BVDV) through the zona pellucida (ZP) of intact bovine embryos during the pre-freezing step of cryopreservation was investigated in a series of experiments. In vitro fertilized (IVF) embryos at the blastocyst stage were exposed to 10(6) TCID50 BVDV (non-cytopathic NY-1 strain) in a 30% suspension of either ethylene glycol, glycerol, DMSO, or 2 M sucrose in physiological saline for 10 min at 20 degrees C. Subsequently, the embryos were washed free of residual unbound viral particles, and the ZP of some embryos were removed by micromanipulation. Groups of ZP-intact embryos, ZP-free embryonic cells and their respective ZP were then tested separately for the presence of virus. The infectious virus was detected in association with 81% (17/21) of samples containing non-micromanipulated ZP-intact embryos which were exposed to the virus and cryoprotectants and then washed 10 times and in 83% (43/53) of the samples containing only ZP from micromanipulated embryos (P > 0.05). The virus was not found in the samples containing the corresponding embryonic cells of embryos exposed previously to the virus and cryoprotectants. It was concluded that the transfer of embryos from the isotonic PBS solution into a highly hypertonic cryoprotectant solution did not cause the passage of BVDV through ZP and its entry to embryonic cells.  相似文献   

14.
I W Smoak  T W Sadler 《Teratology》1991,43(6):635-641
Hypothermia often occurs in association with clinical conditions involving severe hypoglycemia, but its effect on embryonic development has not been well evaluated. Thus, the whole embryo culture method was used to expose day 9 (neurulating) and day 10 (early limb bud stage) mouse embryos to physiologic levels of hypothermia (35 degrees C and 32 degrees C) for 4 and 24 hr. Embryos were evaluated after 24 hours for growth and malformations and compared with controls grown at 37 degrees C. Lactate production was measured in embryos cultured for 4 hr at 32 degrees C and compared with those cultured at 37 degrees C. A 4-hr exposure to hypothermia produced little effect morphologically but reduced the rate of lactate production at both embryonic stages. A 24-hr exposure to hypothermia at 35 degrees C or 32 degrees C produced growth retardation and dysmorphogenesis in embryos undergoing neurulation. Early limb bud stage embryos were less sensitive to this treatment, with growth retardation produced only at the lower temperature. Since hypothermia is commonly associated with severe hypoglycemia in cases of diabetic insulin overdose, day 9 (neurulating) mouse embryos were exposed concurrently to short periods of hypothermia and hypoglycemia and compared with embryos cultured in hypoglycemic medium at normal temperature. The results demonstrate that hypothermia partially protects embryos against the dysmorphogenic effects of hypoglycemia. A balance of metabolic rate and available substrate is discussed as a possible mechanism for this protective effect.  相似文献   

15.
The aim of this study was to determine the effects of a low frequency electric field on the early embryonic development of frogs. The embryos of African clawed toads, Xenopus laevis, were exposed to a 20-μA electric current during the cleavage stages. The developmental processes of embryos during and after electric field exposure were monitored for teratogenic effects. All the embryos continuously exposed to the electric field died without undergoing any developmental processes. However, when the embryos were exposed to the electric field for 20-min periods (four times/over 2 d), the embryos developed into both normal tadpoles (70 %) and malformed tadpoles with light edema, reduced pigmentation, or axial anomalies, such as crooked tails. After exposure, the control embryos were at development stage 35.5 (2 d 2 h), while the normal embryos of the assay group were at developmental stage 41(3 d 4 h). There was a 1 d 2 h difference between the two developmental stages, revealing the importance of that time period for embryogenesis. In conclusion, the effects of electric current on Xenopus embryos are dependent on the initial developmental stage and the duration of exposure.  相似文献   

16.
Bovine embryo morphology and evaluation   总被引:7,自引:0,他引:7  
The following paper briefly reviews the morphology of the bovine embryo and presents a retrospective analysis of bovine embryo transfer results accumulated from April to December of 1982 at a commercial embryo transfer center. Of particular interests were bovine embryo morphology, assessment of embryo quality, and recipient-donor, recipient-embryo synchrony requirements. Embryos were recovered from superovulated donors five to nine days after estrus (estrus = day O). All embryos were individually examined at 200X for cell stage of development and embryo quality. Embryos were nonsurgically transferred to recipients that were within two days of estrous cycle synchrony with the donor. Attempts were made to synchronize estimated developmental age of embryos to the day of the recipient cycle. A high degree of variability was observed in morphological development and embryo quality within and among donors. Embryo recovery in individual donors resulted in a wide range of embryonic cell stages, often differing in estimated developmental ages from 24 to 48 hours. A total of 783 embryos were transferred, resulting in 308 pregnancies. Stage of embryonic development (16-cell through hatched blastocyst) had little effect on pregnancy rates. Embryo quality was a more accurate predictor of success. Embryos of excellent, good, fair and poor categories resulted in 45%, 44%, 27% and 20% pregnancy rates, respectively. Recipient-donor estrous cycle synchrony of two days in either direction did not significantly alter pregnancy rates. However, 88% of 258 pregnancies (584 total transfers) occurred with a +/-1 day recipient-embryo synchrony compared to 74% based on +/-1 day recipient-donor cycle synchrony (P<0.001). Results suggest that transfer of bovine embryos based on synchrony between day of recipient cycle and state of embryonic development provides higher pregnancy rates than transfers based on recipient-donor cycle synchrony.  相似文献   

17.
Insulin-like growth factor-I (IGF-I) is a survival factor for preimplantation mammalian embryos exposed to stress. One stress that compromises preimplantation embryonic development is elevated temperature (i.e., heat shock). Using bovine embryos produced in vitro as a model, it was hypothesized that IGF-I would protect preimplantation embryos by reducing the effects of heat shock on total cell number, the proportion of blastomeres that undergo apoptosis, and the percentage of embryos developing to the blastocyst stage. In experiment 1, embryos were cultured with or without IGF-I; on Day 5 after insemination, embryos >or=16 cells were cultured at 38.5 degrees C for 24 h or were subjected to 41 degrees C for 9 h followed by 38.5 degrees C for 15 h. Heat shock reduced the total cell number at 24 h after initiation of heat shock and increased the percentage of blastomeres that were apoptotic. Effects of heat shock were less for IGF-I-treated embryos. Experiment 2 was conducted similarly except that embryos were allowed to develop to Day 8 after insemination. The percentage reduction in blastocyst development for heat-shocked embryos compared with those maintained at 38.5 degrees C was less for embryos cultured with IGF-I than for control embryos. Heat shock reduced the total cell number in blastocysts and increased the percentage of blastomeres that were apoptotic, whereas IGF-I-treated embryos had increased total cell number and a reduced percentage of apoptosis. Taken together, these results demonstrate that IGF-I can serve as a survival factor for preimplantation bovine embryos exposed to heat shock by reducing the effects of heat shock on development and apoptosis.  相似文献   

18.
Embryos from Bos indicus are more resistant to elevated culture temperature (i.e. heat shock) than embryos from some Bos taurus breeds. The present experiment was designed to determine if Brahman embryos have greater resistance to heat shock than Holstein embryos at a stage in development before the embryonic genome was fully activated. A second objective was to test breed effects on estrus synchronization and superovulation responses. A total of 29 Brahman and 24 Holstein cows were subjected to estrus synchronization using gonadotropin releasing hormone (GnRH) and prostaglandin F2alpha (PGF2alpha) superovulation. Embryos were collected at 48 h and day 5 after insemination. There was a tendency for a lower proportion of Brahmans to be detected in standing estrus than Holsteins. There were no differences between breeds in the proportion of cows detected in estrus using both tailpaint and standing estrus as criteria or in interval from PGF2alpha to estrus. The degree of synchrony in estrus was greater for Brahmans. Superovulation response was generally similar between breeds. At 48 h after insemination, there was a tendency for a greater proportion of Brahman oocytes to have undergone cleavage. Uncleaved oocytes were cultured for an additional 24 h-at this time, cleavage rate was similar between breeds. When embryos reached the 2-4-cell stage, they were heat-shocked for 4.5 h at 41 degrees C. This heat shock reduced the proportion of embryos that developed to the blastocyst stage but there was no breedxtreatment interaction. At day 5 after insemination, the number of embryos recovered was too low to allow comparison of breed effects. In conclusion, genetic effects on cellular thermotolerance that make Brahman embryos more resistant to heat shock are not expressed at the 2-4-cell stage. There were few differences between Brahman and Holstein in response to estrus synchronization and superovulation. The fact that cleavage tended to occur earlier in Brahman than Holstein embryos suggests breed differences in timing of ovulation, fertilization or events leading to cleavage.  相似文献   

19.
We describe muscarinic receptors and intracellular Ca2+ mobilization after cholinergic stimulation in cell suspensions prepared from chick embryos between day 2 (stage 12/13) and day 13 (stage 40) of development. Cell suspensions are prepared from whole chick embryos and from embryonic hearts, heads or brains, limb buds, and trunks. Muscarinic receptors are measured using [3H]quinuclidinylbenzilate as specific ligand. Intracellular Ca2+ mobilization is determined by changes of chlorotetracycline fluorescence. (1) Considerable amounts of muscarinic receptors are found in all parts of the embryo and at all stages tested. (2) The intracellular Ca2+ response after stimulation by muscarinic agonist shows a peak at day 3-4 (stage 23). (3) The pharmacological profile of the Ca2+ response remains constant during embryonic development and differs from the profiles of most adult systems. (4) The 'embryonic muscarinic system' is uniformly expressed in cells from neural and non-neural tissues. It appears and disappears independently of innervation.  相似文献   

20.
BACKGROUND: Exposure to a diabetic environment causes excess reactive oxygen species (ROS), decreased prostaglandin E(2) (PGE(2)) concentration, and increased embryonic maldevelopment. The aim of the present work was to study whether embryonic dysmorphogenesis is also dependent on alterations of inositol and associated intracellular metabolites. METHODS: Day 9 rat embryos were cultured for 24 or 48 hr and evaluated for gene expression. Day 10 and day 11 embryos from normal and diabetic rats were also examined. RT-PCR was used to study embryonic gene expression of protein kinase C (PKC) and cytosolic phospholipase A(2) (cPLA(2)). RESULTS: Embryos exposed to 30 mmol/L glucose (30G), 500 or 750 micromol/L of scyllo-inositol (500SI or 750SI) had higher malformation score than control embryos cultured in 10 mmol/L glucose (10G). Adding 1.6 mmol/L inositol to the 30G or 750SI culture medium partly corrected these embryos, and completely normalized 500SI embryonic development. Adding 0.5 mmol/L N-acetylcysteine (NAC) or 280 nmol/L PGE(2) protected, and failed to protect, the SI-exposed embryos, respectively. 10G embryos exposed to the PKC inhibitor GF-109203X displayed dose-dependent dysmorphogenesis. Addition of 1.6 mmol/L inositol or 0.5 mmol/L NAC to the PKC-inhibitor-exposed 10G embryos largely normalized the outcome, whereas PGE(2) again failed to protect embryonic development. 30G culture tended to decrease the expression of cPLA(2) after 24 hr in vitro. We also found decreased mRNA levels of cPLA(2) in offspring of diabetic rats on gestational day 10 and of PKC on day 11, as compared with normal offspring. CONCLUSIONS: High glucose concentration causes dysmorphogenesis in embryos by an interaction of oxidative stress and inositol depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号