首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Trichoderma species are widely used in agriculture as biofungicides. These fungi are rich source of secondary metabolites and the mycoparasitic species are enriched in genes for biosynthesis of secondary metabolites. Most often, genes for secondary metabolism are clustered in fungal genomes. Previously, no systematic study was undertaken to identify the secondary-metabolism related gene clusters in Trichoderma genomes. In the present study, a survey of the three Trichoderma genomes viz. T. reesei, T. atroviride and T. virens, was made to identify the putative gene clusters associated with secondary metabolism. In T. reesei genome, we identified one new NRPS and 6 new PKS clusters, which is much less than that found in T. atroviride (4 and 8) and T. virens (8 and 7). This work would pave the way for discovery of novel secondary metabolites and pathways in Trichoderma.  相似文献   

2.
Trichoderma species are widespread phytostimulant fungi that act through biocontrol of root pathogens, modulation of root architecture, and improving plant adaptation to biotic and abiotic stress. With the major challenge to better understand the contribution of Trichoderma symbionts to plant adaptation to climate changes and confer stress tolerance, we investigated the potential of Trichoderma virens and Trichoderma atroviride in modulating stomatal aperture and plant transpiration. Arabidopsis wild-type (WT) seedlings and ABA-insensitive mutants, abi1-1 and abi2-1, were co-cultivated with either T. virens or T. atroviride, and stomatal aperture and water loss were determined in leaves. Arabidopsis WT seedlings inoculated with these fungal species showed both decreased stomatal aperture and reduced water loss when compared with uninoculated seedlings. This effect was absent in abi1-1 and abi2-1 mutants. T. virens and T. atroviride induced the abscisic acid (ABA) inducible marker abi4:uidA and produced ABA under standard or saline growth conditions. These results show a novel facet of Trichoderma-produced metabolites in stomatic aperture and water-use efficiency of plants.  相似文献   

3.
4.
Present study was aimed to select a suitable Trichoderma isolate as candidate antagonist based on its efficacy in producing cell wall degrading enzymes (CWDEs), its mycoparasitism activity and expression of related genes against the red rot pathogen caused by Colletotrichum falcatum in sugarcane. For which, six different isolates of Trichoderma selected from our earlier studies (T. harzianum, T. asperullum) were evaluated based on their capability in releasing cell wall degrading enzymes individually and during antagonism with C. falcatum in dual plate. Amongst T. harzianum (T20) exhibited the greatest mycoparasitic potential against the C. falcatum, by producing higher concentration of  CWDEs viz., chitinase and β-1, 3-glucanase, slightly lower amounts of cellulase and protease with significant reduction in polygalacturonase produced by pathogen. Further microscopic observation on interaction of C. falcatum with the selected isolate of T. harzianum (T20) exhibited the mycoparasitic activity of antagonist over pathogen in dual culture and inhibition of C. falcatum pathogenesis in detached sugarcane leaves. In addition, expression pattern of eight genes coding various enzymes involved in mycoparasitism by T. harzianum over C. falcatum were analyzed using qRT-PCR in vitro and on sugarcane leaves. In in vitro interactions, five genes of  cell wall degrading enzymes viz., chitinase (chit33), endochitinase (endo42), β-1, 3-glucanase (glu), exochitinase 1 (exc1), exochitinase 2 (exc2), were upregulated during and after contact as compared to before contact, while three genes related with proteases such as alkaline proteinase (prb1), trypsin-like protease (Pra1), subtilin-like serine protease (ssp), genes were upregulated during the contact with C. falcatum and slightly down regulated after contact. In detached leaves, seven genes were potentially upregulated except subtilin-like serine protease, which was down regulated during interaction of C. falcatum and T. harzianum as compared to T. harzianum inoculation alone. All these biochemical and molecular results confirm the efficacy of T. harzianum (T20) against C. falcatum and justify the right selection of candidate antagonist for our further studies on identification of antifungal genes/proteins against C. falcatum in sugarcane.  相似文献   

5.
The study evaluates the survivability and storage stability of seven Trichoderma strains belonging to the species: T. harzianum (1), T. atroviride (4), and T. virens (2) after the lyophilization of their solid state cultures on wheat straw. Biomass of Trichoderma strains was freeze-dried with and without the addition of maltodextrin. Furthermore, in order to determine the ability of tested Trichoderma strains to preserve selected technological features, the biosynthesis of extracellular hydrolases (cellulases, xylanases, and polygalacturonases) after a 3-month storage of lyophilizates was investigated. Strains of T. atroviride (except TRS40) and T. harzianum TRS85 showed the highest viability after lyophilization process (up to 100%). After 3 months of storage, T. atroviride TRS14 exhibited the highest stability (95.23%); however, the number of active conidia remained at high level of 106–107 cfu/g for all tested T. atroviride strains and T. harzianum TRS85. Interestingly, after a 3-month storage of lyophilized formulations, most of the tested Trichoderma strains exhibited higher cellulolytic and xylanolytic activities compared to the control, i.e., before freeze-drying process. The highest activities of these enzymes exhibited the following: T. atroviride TRS14–2.37 U/g and T. atroviride TRS25–21.47 U/g, respectively, whereas pectinolytic activity was weak for all tested strains, with the highest value of 0.64 U/g registered for T. virens TRS109.  相似文献   

6.
Trichoderma species form endophytic associations with plant roots and may provide a range of benefits to their hosts. However, few studies have systematically examined the diversity of Trichoderma species associated with plant roots in tropical regions. During the evaluation of Trichoderma isolates for use as biocontrol agents, root samples were collected from more than 58 genera in 35 plant families from a range of habitats in Malaysian Borneo. Trichoderma species were isolated from surface-sterilised roots and identified following analysis of partial translation elongation factor-1α (tef1) sequences. Species present included Trichoderma afroharzianum, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma guizhouense, Trichoderma reesei, Trichoderma strigosum and Trichoderma virens. Trichoderma asperellum/T. asperelloides, Trichoderma harzianum s.l. and T. virens were the most frequently isolated taxa. tef1 sequence data supported the recognition of undescribed species related to the T. harzianum complex. The results suggest that tropical plants may be a useful source of novel root-associated Trichoderma for biotechnological applications.  相似文献   

7.
8.
9.
Biocontrol strategies have been mainly focused on proposing the use of biocontrol agents (BCAs) isolated from the rhizospheric region of the plant for protection against phytopathogens. The present study evaluates the effectiveness of phyllospheric Trichoderma isolates in elevating the defense responses in chilli against Colletotrichum capsici infection and comparing its efficiency to the conventionally recommended rhizospheric Trichoderma strains. The elicitation of the defense network in the plants was analyzed using biochemical assays for important enzymes, that is, PAL, PO, PPO, TPC, SOD along with the total protein level in challenged plants over untreated and unchallenged control plants. The results recorded 2.1, 5.18, 3, 0.67, and 0.5-fold increases in TPC, PAL, PO, PPO, and total protein content in BHUF4 (phyllopsheric Trichoderma isolate)-treated plants when compared to control plants under C. capsici challenge. This was at par with the increment recorded in T16A (rhizospheric Trichoderma isolate)-treated chilli plants. The increment in growth parameters was also recorded after treatment with the isolated Trichoderma strains. Interestingly, the phyllospheric isolate (BHUF4) treatment recorded comparable growth promotion in chilli plants recording 36, 62, and 60 % increases in one of the major parameters of plant growth, that is, root length, no. of leaves, and dry weight, respectively. This study proposes the use of combined application of both rhizospheric as well as phyllospheric Trichoderma isolates for better and all around protection of plants against foliar as well as soil phytopathogens. This would be a novel approach in biological control strategy for better management of anthracnose disease of chilli.  相似文献   

10.
11.
Climate change is one of the biggest challenges of the twenty-first century for sustainable agricultural production. Several reports highlighted the need for better agricultural practices and use of eco-friendly methods for sustainable crop production under such situations. In this context, Trichoderma species could be a model fungus to sustain crop productivity. Currently, these are widely used as inoculants for biocontrol, biofertilization, and phytostimulation. They are reported to improve photosynthetic efficiency, enhance nutrient uptake and increase nitrogen use efficiency in crops. Moreover, they can be used to produce bio-energy, facilitate plants for adaptation and mitigate adverse effect of climate change. The technological advancement in high throughput DNA sequencing and biotechnology provided deep insight into the complex and diverse biotic interactions established in nature by Trichoderma spp. and efforts are being made to translate this knowledge to enhance crop growth, resistance to disease and tolerance to abiotic stresses under field conditions. The discovery of several traits and genes that are involved in the beneficial effects of Trichoderma spp. has resulted in better understanding of the performance of bioinoculants in the field, and will lead to more efficient use of these strains and possibly to their improvement by genetic modification. The present mini-review is an effort to elucidate the molecular basis of plant growth promotion and defence activation by Trichoderma spp. to garner broad perspectives regarding their functioning and applicability for climate resilient agriculture.  相似文献   

12.
The methylerythritol phosphate (MEP) pathway for the production of isoprenoids is recently discovered. The current study aimed to identify MEP pathway disorder-related molecular mechanisms and potential genes in Arabidopsis thaliana. Microarray data (GSE61675) obtained from ceh1 mutant plants and corresponding parental lines were retrieved from Gene Expression Omnibus (GEO) database and were applied for differentially expressed genes (DEGs) screening. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed. Protein-protein interaction (PPI) network was then constructed and displayed by Cytoscape software. Total 762 DEGs including 620 up-regulated and 142 down-regulated genes were screened. In addition, a great many of DEGs were mainly involved in biosynthesis and metabolism-related pathways, such as stilbenoid, diarylheptanoid, and gingerol biosynthesis, and biosynthesis of terpenoids and steroids. Moreover, a PPI network contained 90 down-regulated genes and 497 up-regulated genes were obtained. Up-regulated DEGs including glutaredoxin (GRX480, cytochrome BC1 synthase (BCS1, syntaxin of plants 121 (SYP121) and A. thaliana MAP kinase 11 (ATMPK11) with higher degree in this network were hub nodes. Pathways including stilbenoid, diarylheptanoid, and gingerol biosynthesis obtained in our study were consistent with previous studies. Importantly, GRX480, BCS1 and ATMPK11 could have close interactions with the MEP pathway and may play important roles in the biosynthesis of isoprenoids.  相似文献   

13.
14.
Biological control is an additional tool available for the design of more sustainable control strategies of wheat diseases. Trichoderma spp. have previously been used as biocontrol agents to protect wheat plants against leaf spots diseases in Argentina, but the information from field assays is scarce. The effectiveness of four Trichoderma harzianum strains and one T. koningii strain in reducing the incidence and severity of the leaf blotching of wheat caused by Septoria tritici blotch (STB) under two formulation conditions, spore suspension and the coated-seed technique, was studied under field conditions. Significant differences between wheat cultivars, formulation types and growth stages were found. In 2003, at the tillering stage, all of the treatments tested (except SST1 for incidence) effectively reduced the incidence or the severity of the disease compared to the control. Similarly, in 2004, ten of the treatments reduced the severity at tillering. At the heading stage, none of the treatments tested caused a significant decrease of the disease. These results indicated, therefore, that the antagonism was effective at an early stage of the disease only. Comparing both formulations, spraying spore suspension onto leaves and the coated-seed application technique, both were effective in decreasing the disease. Some isolates, such as CST4 and CST2, reduced the incidence value of STB to 40% and the severity value to 70% of the control values applied as coated-seed formulation. On the other hand, isolates T4 and T2 showed the greatest effectiveness for controlling STB, with similar reduction values to that shown by the fungicide (Folicur®) application treatment. The results of this study indicated that, although the immediate impact of Trichoderma isolates may be seen as reduced incidence and severity on the first stages of STB, in the long term, the same disease levels as found in untreated sites may be attained. This study also demonstrated that the incorporation of Trichoderma as a biocontrol preparation may be a promising step towards reducing STB disease in the field and the levels of fungicide residues in the context of a more integrated approach to the problem.  相似文献   

15.
Fungal endophytes use different strategies to protect host plants from abiotic and biotic stress. In this study, we isolated endophytic fungi from Pistacia vera and characterised their antifungal activity against Aspergillus flavus, Rhizoctonia solani and Sclerotinia sclerotiorum, and their release of some factors that can alter plant growth capability. Trichoderma harzianum TH 5-1-2, T. harzianum TH 10-2-2 and T. atroviride TA 2-2-1 exhibited the highest growth inhibition percentages in dual culture assays against A. flavus, R. solani and S. sclerotiorum, respectively. Among the fungal endophyte cultures, ethyl acetate extracts of T. harzianum TH 10-2-2, T. harzianum TH 5-1-2 and T. atroviride TA 2-2-1 exhibited the highest growth inhibition of S. sclerotiorum, R. solani and A. flavus, respectively. Phosphate solubilisation was induced by Byssochlamys nivea BN 1-1-1 in culture. Large amounts of siderophore production were observed with Quambalaria cyanescens QC 11-3-2 and Epicoccum nigrum EN1, but Trichoderma spp. also produced siderophore in lower amounts. Trichoderma harzianum TH 5-1-2 produced the highest chitinase activity (2.92 U/mL). In general, among the endophytes isolated, Trichoderma spp. appear to have the most promise for promoting healthy growth of P. vera.  相似文献   

16.
The high molecular weight insecticidal toxin complexes (Tcs), including four toxin-complex loci (tca, tcb, tcc and tcd), were first identified in Photorhabdus luminescens W14. Each member of tca, tcb or tcc is required for oral toxicity of Tcs. However, the sequence sources of the C-termini of tccC3, tccC4, tccC6 and tccC7 are unknown. Here, we performed a whole genome survey to identify the orthologs of Tc genes, and found 165 such genes in 14 bacterial genomes, including 40 genes homologous to tccC1-7 in P. luminescens TT01. The sequence sources of the C-termini of tccC2-6 were determined by sequence analysis. Further phylogenetic investigations suggested that the C-termini of 6 tccC genes experienced horizontal gene transfer events.  相似文献   

17.

Background

Inflorescences of wheat species, spikes, are characteristically unbranched and bear one sessile spikelet at a spike rachis node. Development of supernumerary spikelets (SSs) at rachis nodes or on the extended rachillas is abnormal. Various wheat morphotypes with altered spike morphology, associated with the development of SSs, present an important genetic resource for studies on genetic regulation of wheat inflorescence development.

Results

Here we characterized diploid and tetraploid wheat lines of various non-standard spike morphotypes, which allowed for identification of a new mutant allele of the WHEAT FRIZZY PANICLE (WFZP) gene that determines spike branching in diploid wheat Ttiticum monococcum L. Moreover, we found that the development of SSs and spike branching in wheat T. durum Desf. was a result of a wfzp-A/TtBH-A1 mutation that originated from spontaneous hybridization with T. turgidum convar. сompositum (L.f.) Filat. Detailed characterization of the false-true ramification phenotype controlled by the recessive sham ramification 2 (shr2) gene in tetraploid wheat T. turgidum L. allowed us to suggest putative functions of the SHR2 gene that may be involved in the regulation of spikelet meristem fate and in specification of floret meristems. The results of a gene interaction test suggested that genes WFZP and SHR2 function independently in different processes during spikelet development, whereas another spike ramification gene(s) interact(s) with SHR2 and share(s) common functions.

Conclusions

SS mutants represent an important genetic tool for research on the development of the wheat spikelet and for identification of genes that control meristem activities. Further studies on different non-standard SS morphotypes and wheat lines with altered spike morphology will allow researchers to identify new genes that control meristem identity and determinacy, to elucidate the interaction between the genes, and to understand how these genes, acting in concert, regulate the development of the wheat spike.
  相似文献   

18.
Canola (Brassica napus L.), an agro-economically important crop in the world, is sensitive to many fungal pathogens. One strategy to combat fungal diseases is genetic engineering through transferring genes encoding the pathogenesis-related (PR) proteins such as chitinase which cause the chitin degradation of fungal cell wall. Chitinase Chit42 from Trichoderma atroviride (PTCC5220) plays an important role in biocontrol and has high antifungal activity against a wide range of phytopathogenic fungi. This enzyme lacks a chitin binding domain (ChBD) which is involved in binding activity to insoluble chitin. In the present study, we investigated the effect of chitin binding domain fused to Chit42 when compared with native Chit42. These genes were over-expressed under the CaMV35S promoter in B. napus, R line Hyola 308. Transformation of cotyledonary petioles was achieved by pBISM2 and pBIKE1 constructs containing chimeric and native Chit42 genes respectively, via Agrobacterium method. The insertion of transgenes in T0 generation was verified through polymerase chain reaction (PCR) and Southern blot analysis. Antifungal activity of expressed chitinase in transgenic plants was also investigated by bioassays. The transgenic canola expressing chimeric chitinase showed stronger inhibition against phytopathogenic fungi that indicates the role of chitin binding domain.  相似文献   

19.
This work presents the data on the rate of utilization of phenols formed during lignin pyrolysis by micromycetes of the genera Trichoderma and Penicillium. Trichoderma strains utilized phenols at the concentration of liquid pyrolytic products of 0.5–1%, while Penicillium strains degraded over 50% phenols at the concentration of pyrolytic products of 2%. Micromycete cultures completely utilized phenol and the cresol-xylenol fraction. Penicillium strains demonstrated a more active growth on media containing phenol, p-cresol, or guaiacum tar as the source of carbon as compared to Trichoderma. m-Cresol and m-xylenol in micromycete growth media containing products of lignin pyrolysis seem to be utilized by co-oxidation.  相似文献   

20.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号