首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fox M  Boyle JM  Fox BW 《Mutation research》1976,35(2):289-309
Purine analogue resistant clones have been selected from the closely related Chinese hamster lines V79A and V79S. Clones were of either spontaneous origin or induced by EMS or ultraviolet light. The majority of clones selected in 8-azaguanine showed stable cross resistance to 6-thioguanine. Clones derived from V79A and selected for 6-thioguanine resistance were cross resistant to 8-azaguanine: however a group of 6-thioguanine resistant mutants selected from V79S cells were 8-azaguanine sensitive. All clones except two were unable to grow in HAT medium. The two exceptions were 8-azaguanine resistant, showed partial sensitivity to 6-thioguanine, and also differed in other biochemical characteristics. HGPRT activity was measurable in extracts of all clones under standard conditions. In many clones, HGPRT activity increased as the hypoxanthine concentration was reduced. Whole cell uptake of [14C] hypoxanthine was low in all cases examined and was not modified by incubation in the presence of amethopterin. The heat sensitivity and electrophoretic mobility of HGPRT in extracts of some clones was compared to that in wild-type extracts. All clones tested except one, which was consistently HAT positive, showed enhanced heat sensitivity and reduced electrophoretic mobility. None of the mutants reverted spontaneously at detectable frequency but some could be induced to revert by EMS. The presence of measurable enzyme with altered properties in all clones suggests that these revertable drug resistant clones represent missense mutants.  相似文献   

2.
When seeded in small numbers in medium containing 10?6M aminopterin and fetal calf serum, V79 Chinese hamster cells required dialyzable components from the serum for growth. However, the cells grew in medium containing 10?6M aminopterin and dialyzed serum, provided that the medium was supplemented with 10?5M hypoxanthine and sufficient 5·10?6M) thymidine. A growth-inhibitory property of some batches of dialyzed serum was abolished on heating the serum for 30 min at 56°. Three lines of V79 cells which lacked detectable hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity were seleccted in medium containing 8-azaguanine (8-AzG). In two of these, no spontaneous reversion to the HGPRT+ phenotype was detectable, and these cells did not cooperate metabolically with HGPRT+ cells to prevent the growth of the latter in HAT medium. One of the HGPRT? lines showed a high rate of spontaneous reversion (118/105 cells) in medium containing undialyzed serum. However, in medium containing dialyzed serum the spontaneous reversion rate fell to 4105cells, suggesting that the revertants arising in medium containing undialyzed serum were biochemically heterogeneous.  相似文献   

3.
4.
From cultures of V79 Chinese hamster cells, 10 independent clones of 8-azaguanine resistant cells were isolated and subcultured. Cells from all ten clones were resistant to 1 mg/ml levels of 8-azaguanine (8-AzG), contained less than 3% of the wild type levels of the enzyme, hypoxanthine guanine phosphoribosyl transferase (HGPRT), and were unable to grow in HAT medium. The ten clones were classified according to the conditions under which they reverted to the wild type phenotype. Clones in classes I and II reverted spontaneously with frequencies of 40-10(-5) and about 3-10(-5) respectively, and the reversion frequency was independent of the density of cells of all but one of the clones in the culture medium used. Class II clones evinced increased reversion frequencies with ethyl methanesulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and to a lesser extent with 5-bromo-2'-deoxyuridine (budR), suggesting that these clones contained point mutations in a locus which controls HGPRT activity. The processes of reversion and toxicity appeared to be associated. Class III clones did not revert spontaneously or with BUdR and MNNG, but did revert with EMS. The reversion frequency of class I clones was not increased after treatment with EMS, MNNG or BUdR.  相似文献   

5.
Low concentrations (?20 μg/ml) of 8-azaguanine are 1000 fold more toxic to V79 Chinese hamster cells in medium containing 10% dialyzed fetal calf serum than in medium containing 10% undialyzed serum. Serum enzyme activity that converts AG to nontoxic 8-azaxanthine degrades AG at the same rate, whether or not the serum is dialyzed. However, cytotoxicity results similar to those obtained with US were produced in medium containing DS and 2.5 μg of hypoxanthine (HX)/ml (DSH). Therefore, serum HX is considered to be responsible for the relatively low cytotoxicity of AG in medium containing US. Colonies that arose in medium containing AG were isolated and characterized. Those that remained resistant to AG (40 μg/ml) and sensitive to aminopterin in the presence of HX and thymidine (HAT) were considered mutants; nonmutants were sensitive to AG and resistant to HAT. Colonies isolated from medium containing DSH of US and low concentrations of AG were not mutants, but those from medium containing high concentrations (? μg/l) of AG were mutants. Spontaneous and N-methyl-N′-nitrosoguanidine induced mutants were detectable in medium containing DSH without replating the cells prior to adding AG (?30 μg/ml), but in order to detect MNNG induced mutations in medium containing DS replating was essential. In DS, the mutation frequency increased as an exponential function of the toxicity of MNNG, but remained two orders of magnitude lower than the induced mutation frequencies that occurred in DSH, HX, in DSH or US, produced profound effects, other than interference with AG toxicity, that distort the results of mutagenesis assays. To study mutation using AG resistance as the endpoint, it is essential to use dialyzed serum.  相似文献   

6.
A technique involving culture in soft agar was used for the assay of forward mutation of V79 cells to 6-thioguanine (6TG) resistance. The main reason for the use of soft agar was to prevent reduction in recovery of mutants depending on the cell density plated for mutation selection, which is the chief problem in the liquid method, and which results mainly from metabolic co-operation due to cell-to-cell contact.V79 cells grew well in fortified soft agar medium (DMEM + 20% FBS) showing cloning efficiencies (>80%) as high as in liquid culture. Therefore, V79/HGPRT mutagenesis could be assayed quantitatively in soft agar culture.The frequency of 6TG-resistant colonies in agar selective medium increased linearly with increase in concentration of EMS. Toxicity and mutagenic responses were greater in soft agar than in liquid culture.In cultures of untreated and EMS-treated cells, more than 95% of the 6TG-resistant colonies isolated were aminopterin-sensitive.Use of soft agar for selection prevented the reduction in the number of mutants with increase in the size of incula on plating up to 1?2 × 106 cells per 9-cm dish: in liquid culture, even with a lower plating number (2 × 105 cells per 9-cm dish), a notable reduction in numbers of mutants was observed. This character was re-examined in a reconstruction experiment. The results show that, when up to 2 × 106 cells were plated per 9-cm dish, 6TG-resistant cells were almost completely recovered from the soft agar medium, whereas only 10% were recovered from liquid culture.  相似文献   

7.
We describe an assay for the quantification of reverse mutations at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in Chinese hamster ovary cells utilizing the selective agent L-azaserine (AS). Conditions are defined in terms of optimal AS concentration, cell density, and phenotypic expression time. After treatment, replicate cultures of 106 cells are allowed a 48-h phenotypic expression time in 100-mm plates. AS (10 μM) is then added directly to the growing culture and AS-resistant (ASr) cells form visible colonies. This assay is used to quantify ICR-191-, ICR-170-, and N-ethyl-N-nitrosourea-induced reversion of independently isolated HGPRT? clones. The ASr phenotype is characterized both physiologically and biochemically. All ASr clones isolated are stably resistant to AS and aminopterin but sensitive to 6-thioguanine. They also have re-expressed HGPRT enzyme. In addition, several revertants are shown to contain altered HGPRT. The data provide further evidence that ICR-191 and ICR-170 cause structural gene mutations in mammalian cells and also suggest that ICR-191, ICR-170, and N-ethyl-N-nitrosourea induce similar types of mutations in Chinese hamster ovary cells.  相似文献   

8.
Three 6-thioguanine (6TG)-resistant mutants were mutagen-treated and selected for clones capable of growing in 2 selective media: HAT medium, containing aminopterin (AP) and HAS medium, containing L-azaserine (AS). Both 6TG-sensitive, wild-type clones and 6TG-resistant mutants were found among colonies growing in HAT medium, while only 6TG-sensitive clones grew in HAS medium. Time for expression was required by 6TG-resistant but not by 6TG-sensitive clones, that were fully expressed immediately after treatment. All HAT-resistant, 6TG-resistant clones which were analyzed proved to be resistant to AP. These data were interpreted as follows: in HAT medium, both HGPRT+ revertants and double mutants (HGPRT?, AP-resistant) were selected, while only HGPRT+ revertants were selected in HAS medium. Not all 6TG-resistant mutants were able to produce both classes of HAT-resistant clones.  相似文献   

9.
Nikaido O  Fox M 《Mutation research》1976,35(2):279-287
The frequency of surviving colonies in two V79 cell lines exposed to either 6-thioguanine or 8-azaguanine was dependent on initial plating density. Different degrees of metabolic-co-operation were found to occur in the two cell lines and the loss of both spontaneous and added mutants occurred at a lower cell density when 6TG was used for selection than when 8 AZ was used in both cell lines. Both analogues were degraded on incubation in medium plus serum in the absence of added cells. Variation in serum batch had little effect on the rate of degradation or on the frequency of colonies recovered after treatment of V79 cell lines with 8AZ. The reasons for preferring 8AZ to 6TG as a selective agent are discussed.  相似文献   

10.
We describe a system for detecting somatic cell mutation to 8-azaguanine (8AG) resistance in cultured, diploid human fibroblasts. Hypoxanthine-guanine phosphoribosyltransferase (HG-PRT)-deficient, AG-resistant fibroblasts from boys with the X-chromosomal, Lesch-Nyhan (L-N) mutation served as one type of prototype mutant cells. Both spontaneous and X-ray-induced mutation were studied. Recovery of L-N cells was a function both of density of normal cells and of the AG concentration used for selection. Optimum recovery was achieved at an initial inoculum of 2·104 normal cells per 60 mm diameter culture dish and an AG concentration of 8·10?6M. Efficiency of recovery was between 39 and 90% and controls to determine this efficiency were included in mutagenesis experiments.Attempts to free normal cell populations of pre-existing AG-resistant mutant cells by pregrowth in HAT medium failed because, unlike L-N mutants, most spontaneous AG-resistant mutants can grow in HAT medium. Although pre-existing mutants probably caused overestimation, the average spontaneous mutation rate derived from our experiments was 4.5·10?6 per cell generation. Eliminating one large-yieldv experiment reduced this estimate to 1.9·10?6. Clonal survival of cultured human fibroblasts as a function of X-ray dose was studied. X-Irradiation increased the mutation rate above spontaneous background. Minimum estimates of the increases were 1.13·10?9 per R per cell at 75 R, 7.49·10?8 per R per cell at 125 R, 6.87·10?8 per R per cell at 150 R and 2.16·10?7 per R per cell at 250 R. The total mutagenic effect and the induced mutation rate appeared to be dose-dependent. Normal parental cell strains and their derived AG-resistant mutants had similar X-ray sensitivities indicating that X-rays induced mutations rather than selected for pre-existing mutants.Because of the realism of the cultured diploid, human fibroblast model vis-a-vis in vivohuman cellular events, the mutation detection system described herein is proposed as being potentially useful for environmental monitoring.  相似文献   

11.
A mammalian cellular system, utilizing Syrian hamster embryo cells, was developed for the concomitant study of neoplastic transformation and somatic mutation. Chemically induced somatic mutation of the cells was assayed at two genetic loci. Mutants deficient in hypoxanthine phosphoribosyl transferase (HPRT) were detected by the production of colonies resistant to 8-azaguanine (AGr) or 6-thioguanine (TGr) and mutants with an altered Na+/K+ ATPase were detected by the production of colonies resistant to ouabain (Ouar). Colonies resistant to each of the three selective agents were isolated and characterized. AGr and TGr resistant cells maintained their resistance to the selective agent after isolation and growth in the absence of the drug, displayed a low reversion frequency, and possessed less than 1% of the HPRT activity of the wild-type cells. AGr cells were also resistant to the cytotoxicity effects of 6TG. Ouar cells also maintained their resistance to ouabain and were less sensitive to the inhibition of 86Rb uptake by ouabain than the wild-type cells. The spontaneous frequency of all three types of resistant cells was <10?6, but the mutation frequency was significantly increased following exposure of the cells to known mutagens in a dosage-dependent manner. These properties indicate that AGr and TGr cells posess a mutation in the structural or regulatory gene for HPRT, and that Ouar cells have an altered Na+/K+ ATPase.The factors involved in the quantification of the mutation frequencies of hamster embryo cells following exposure to carcinogens were determined. Cytotoxicity was assayed by a reduction in the cloning efficiency of the treated cells. The recovery efficiencies of the resistant cells were measured by reconstitution experiments and the degree of cross feeding effects of HPRT? cells was determined. The expression time of the mutations following exposure of the cells to carcinogens was also examined, and the mutation frequencie at the two loci of hamster embryo cells following exposure to MNNG or benzo(a)-pyrene (B(a)P) were determined. Employing this system, a quantitative comparison can be made between the frequencies of somatic mutation and morphological transformation.  相似文献   

12.
Summary A clone of Vero cells resistant to up 20 μg/ml 8-azaguanine was isolated. This clone (designated Vero 153) has a doubling rate of approximately 24 h and a maximum cell density of 10,000/mm2. Deficiency of the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT) in Vero 153 was demonstrated by methods of radiochromatography. Vero 153 is susceptibletto hypoxanthine-thymidine-aminopterin (HAT) medium and its resistance to 8-azaguanine seems to be nonreversible. Like parenal cells, Vero 153 was also incapable of interferon production when challenged with Newcastle disease virus (NDV) or poly(inosinic acid) poly(cytidylic acid) (poly I:C). Similar chromasome complements (majority range 56 to 57) and band patterns were observed in cells harvested at Passages 10, 20, and 50. The potential use of Vero 153 for somatic cell hybridization for purposes of gene mapping, virus rescue, and the control of inteferon production is discussed. This project was supported by grant from the Medical Research Council, Canada (MT-1615).  相似文献   

13.
Using synchronous populations obtained by selectively detaching mitotic cells from cultures grown in monolayer, we demonstrate here that Chinese hamster ovary (CHO) cells exhibit a differential sensitivity to mutation induction by UV as a function of position in the cell cycle. When mutation induction to 6-thioguanine (TG) resistance is monitored, several maxima and minima are displayed during cell-cycle traverse, with a major maximum occurring in early S phase. Although cells in S phase are more sensitive to UV-mediated cell lethality than those in G1 or G2/M phases, there is not a strict correlation with induced mutation frequency. Fluence-response curves obtained at several times during the cell cycle yield Dq values approximating 6 J/m2. The primary survival characteristic which varies with cell cycle position is D0, ranging from 2.5 J/m2 at 6 h after mitotic selection to 5.5 J/m2 at 11 h afterward. Based on studies with asynchronous, logarithmically growing populations, as well as those mitotically selected to be synchronous, the optimum phenotypic expression time for induced TG resistance is 7–9 days and is essentially independent of both UV fluence and position in the cell cycle. All isolated mutants have altered hypozanthine—guanine phosphoribosyl transferase (HGPRT) activity, and no difference in the residual level of activity was detected among isolated clones receiving UV radiation during G1, S, or late S/G2 phases of the cell cycle. Changes in cellular morphology during cell-cycle traverse do not contribute to the differential susceptibility to UV-induced mutagenesis.  相似文献   

14.
Higher mutation frequencies were observed on 8AG than on 8AG medium when HGPRT-deficient mutants were being selected in V79 Chinese hamster cells.2 alternative explanations for the effect of the medium were considered, namely (1), that mechanisms are present that cause resistance to 8AG only, in addition to that (or those) causing resistance to both drugs, and (2), that mutants with low HGPRT content survive on 8AG but not on 6TG medium, owing to lower affinity of 8AG for the enzyme. The second explanation was favoured as a result of various experimental approaches, including kinetics of expression on the 2 media, cross-resistance at different expression times and serial selection on the 2 media.  相似文献   

15.
Mycoplasma hyorhinis strains were isolated from Chinese hamster DON cells which lacked the ability to produce hybrid colonies in HAT medium. The mycoplasma isolates were virtually devoid of HGPRT activity in vivo and in vitro in the presence of excess co-enzyme, phosphoribosylpyrophosphate. Deliberate infection of mycoplasma-free cells caused no alterations in the HGPRT? and TK? phenotypes of the cells. Heterokaryon formation with infected cells was normal and the failure to produce hybrid colonies resulted from depletion, by nucleoside phosphorylase activity, of exogenous thymidine required for rescue of hybrid cells in HAT medium. Increasing the thymidine concentration and repeatedly replenishing HAT medium permitted hybrid clone formation.  相似文献   

16.
Hypoxanthine (Hx), thymidine (TdR) and deoxycytidine (CdR), at concentrations of 10(-5) M increased the yield of 8-azaguanine-resistant (AzGr) mutants induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in cultured Chinese hamster V79 cells. The cytotoxicity of MNNG was increased 2-fold in the presence of Hx, and more than 10-fold in the presence of TdR. This cytotoxic effect of TdR was abolished by equal concentrations of CdR, which by itself did not increase the cytotoxicity of MNNG. However, the yield of MNNG-induced AzGr colonies was increased 2--10-fold in the presence of both CdR and TdR. The AzGr colonies displayed phenotypes characteristic of hypoxanthine: guaninephosphoribosyltransferase-deficient (HGPRT-) mutants, or indicative of mutant HGPRT with altered substrate affinities. The nucleosides did not affect the growth or expression time of the HGPRT- mutants; the same extent of alkali-labile DNA damage occurred in cells treated with alkylating agents in the presence and absence of TdR and CdR; and the increase in mutation frequency in the presence of these nucleosides occurred not only with MNNG, but also with ethylating agents. Nucleosides treated with MNNG were not mutagenic, and treatment of the cells with TdR and CdR only prior to treatment with MNNG or only during selection with AzG did not increase the induced mutation frequency. Therefore, the interpretation is proposed that CdR, TdR and Hx produce nucleotide-pool imbalances that increase lethal and mutagenic errors of replication of alkylated DNA.  相似文献   

17.
A search for allelic recombination in Chinese hamster cell hybrids   总被引:8,自引:0,他引:8  
Summary Mutants resistant to 6-thioguanine were selected from CHO cells which were either temperature sensitive or proline requiring. These mutants were stable and had low levels of hypoxanthine guanine phosphoribosyl transferase (HGPRT). Hybrids were selected which were heteroallelic at the hgprt locus and complementation between the mutants used was not observed. Interallelic recombination at this locus would generate hgprt + cells which could be selected in Littlefield's HAT medium. Selection experiments with hybrids containing three different pairs of mutants yielded no recombinants among populations of 4x106-2x107 cells. After treatment with the recombinagen mitomycin C, 3 putative recombinants were detected amongst 1.4x107 surviving cells from one hybrid. One of these strains was examined and shown to have a normal level of HGPRT and its heterozygosity at this locus was demonstrated by the segregation of colonies resistant to 6-thioguanine. It cannot be excluded that the rare hgprt + colonies seen arose by mutation rather than by recombination. Mitotic allelic recombination therefore appears to be a much less frequent event in CHO cells than it is in lower eukaryotes. It is possible that mitotic recombination is effectively suppressed in mammalian cells to prevent the expression of deleterious recessive mutants.  相似文献   

18.
The cytotoxic effects of azaguanine and thioguanine have been compared in two wild-type V79 cells. To achieve equitoxic effects in both cell lines a 10–20-fold higher concentration of azaguanine than thioguanine was required. Affinity of HGPRT for azaguanine was 10-fold lower than for hypoxanthine in both cell lines and was similar to that for thioguanine in V79S cells. Affinity for thioguanine differed by a factor of 3 in the two cell lines. The rate of cell kill by azaguanine was markedly slower than by thioguanine in both cell lines. Reduction of whole cell uptake of [14C]hypoxanthine incorporation by unlabelled azaguanine was only demonstrable after prolonged incubation periods as was incorporation of [14C]azaguanine into acid-insoluble material. Experiments with cell-free extracts indicated that hypoxanthine acts as a non-competitive inhibitor of the enzyme. The slow rate of dissociation of the HGPRT—azaguanine complex is reflected in the slow rate of killing of wild-type cells. Clones resistant to the cytotoxic effects of these analogues have been selected from both cell lines and have been shown to possess HGPRT with altered kinetic properties. Our data suggest that azaguanine and thioguanine may select for mutations at different sites on the HGPRT molecule in V79 cells and provide possible explanations for the differences in effectiveness of these two agents reported in other cell lines.  相似文献   

19.
An assay is described for the measurement of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells utilizing resistance to 6-thioguanine (TG). Optimal selection conditions are defined for such parameters as phenotypic expression time prior to selection, and TG concentration and cell density which permits maximum mutant recovery. The nature of the TG-resistant mutants is characterized by several physiological and biochemical methods. The data demonstrate that more than 98% of the mutant clones isolated by this selection procedure contain altered HGPRTase activity. The CHO/HGPRT system thus shows the specificity necessary for a specific gene locus mutational assay.  相似文献   

20.
Using polyethylene glycol, hybrid cells were formed between rat fibroblasts lacking the enzyme hypoxanthine-guanine phosphoribosyl transferase (HGPRT, B.C. 2.4.2.8) and cells of the liver fluke Fasciola hepatica. The hybrid cells survived in a medium containing hypoxanthine, aminopterin and thymidine (HAT) indicating that the enzyme deficiency of the parental rat cells had been corrected. Isoelectric focusing in agarose gels showed that the HGPRT activity in the hybrids was of F. hepatica rather than rat origin. F. hepatica chromosomes could not be identified with certainty in hybrids; and fluke antigens, other than HGPRT, could not be detected in them or in culture medium in which they had grown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号