首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In 0.05 M NaCl, 6-8% of the total soluble proteins from Novikoff hepatoma cells bind rapidly and reversibly to columns containing either heterologous or homologous DNA adsorbed to cellulose. These proteins can be eluted by buffer containing 2.0 M NaCl. 0.5-1% of the total protein exhibits a 7-17-fold preference for rat DNA over Escherichia coli DNA. 1-1.5% of the proteins bind DNA so strongly that elution cannot be effected by 4.0 M NaCl but can be accomplished by deoxyribonuclease I treatment of the columns. DNA-binding proteins eluted by 2.0 M NaCl were labeled with 125I or 131I and characterized by sodium dodecylsulfate-polyacrylamide gel electrophoresis and isoelectric focusing. These experiments indicate that DNA-binding proteins represent a discrete subset of the total soluble protein. Many similarities were noted between the major components of the homologous and heterologous DNA-binding fractions.  相似文献   

2.
The cytoplasmic DNA-binding proteins of Physarum polycephalum were recovered by chromatography of cytosol extracts on sequential columns of native and denatured calf thymus DNA-cellulose. 5.4% of the total cytosol protein was bound to native DNA-cellulose, while 4.4% was bound to denatured DNA-cellulose. Stepwise salt gradient elution of the columns separated the DNA-binding proteins into 9 fractions which were analysed by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Several hundred discrete polypeptide bands were identified, with many more high molecular weight polypeptides (greater than 100 000 D) binding to native than to denatured DNA. Continuous in vivo labelling of microplasmodia in KH2[32P]O4 and [3H]leucine was used to determine which of the DNA-binding proteins were phosphorylated, and to approximate their phosphorus content. About 30–40 phosphoproteins were resolved among the DNA-binding proteins. Most phosphoproteins contained less than 3 phosphates per polypeptide, but a small number of low molecular weight phosphoproteins (less than 50 000 D) contained from 5 to 10 phosphates per polypeptide. The majority of high molecular weight DNA-binding phosphoproteins bound to native DNA and were eluted with 0.25 M NaCl. As a group, the DNA-binding proteins were enriched in protein-bound phosphorus when compared with the cytosol proteins which did not bind to DNA. The phosphorus content of the cytoplasmic DNA-binding proteins was similar to that of the acidic nuclear proteins.  相似文献   

3.
The in situ assay of deoxyribonucleases in DNA-containing polyacrylamide gels following their separation by microdisc electrophoresis was used to determine the deoxyribonuclease pattern of human lymphocytes during stimulation with phytohemagglutinin (PHA). Two additional neutral deoxyribonuclease activities are detectable in stimulated cells, one only active with denatured DNA, the other active with native and denatured DNA as substrate, showing a maximum activity after 36 h and increasing in waves respectively. A group of acid deoxyribonuclease activities also shows a maximum after 36 h of stimulation. A neutral deoxyribonuclease active only with native DNA is missing in stimulated lymphocytes. It is suggested that the acid deoxyribonuclease activities and the neutral deoxyribonuclease active only with denatured DNA are involved in DNA synthesis, whereas the involvement of the neutral deoxyribonuclease active with native and denatured DNA in processing of DNA excreted in stimulated lymphocytes is discussed.  相似文献   

4.
The DNA-binding activity of blood serum proteins was determined in the process of the immune response accompanied and not accompanied by the appearance of antibodies to DNA in blood immunized animals. The immunological rearrangements in the organism following DNA administration without the appearance of antibodies against a unihelical DNA in the blood serum cause an increase in the DNA-binding ability of blood serum proteins, which decreases the specificity of the radioimmunological method in determination of antibodies to DNA. Denaturation of DNA in the presence of formalin also increases the nonspecific binding with DNA of blood serum proteins containing and noncontaining antibodies to DNA.  相似文献   

5.
DNA-binding proteins in human fibroblasts were examined by chromatography on DNA-cellulose columns. By successive chromatography on columns containing native, denatured, and UV-irradiated DNA-cellulose respectively the proteins binding to different types of DNA could be studied. Elution of the columns with sodium chloride followed by polyacrylamide gel electrophoresis allowed several DNA-binding proteins to be identified. All of the major DNA-binding proteins were present in strains of xeroderma pigmentosum cells respectively deficient in excision-repair and post-replication repair of ultraviolet-induced damage.  相似文献   

6.
Up to seven early poxvirus-specific proteins have been isolated from vaccinia-WR-infected and cowpox-virus-infected chick embryo fibroblasts by affinity chromatography on native DNA-cellulose columns. The proteins have been characterized by one-dimensional sodium dodecyl sulfate/polyacrylamide gel electrophoresis and by nonequilibrium pH-gradient electrophoresis. The molecular weights of the viral proteins were determined by comparison with proteins of known molecular weight and are comparable to several of the vaccinia-WR-specific DNA-binding proteins isolated previously from infected L-929 cells by Solosky J. M., Esteban M. and Holowczak J.A. [J. Virol. 25, 263-273 (1978)]. The viral proteins binding reversibly to native DNA have been classified as immediate early viral gene products. Synthesis of cowpox-virus-induced early DNA-binding proteins is inhibited in chick cells pretreated with homologous interferon at a concentration of 500--1000 units/ml.  相似文献   

7.
Deoxyribonucleic acid (DNA)-mediated transformation of Bacillus subtilis can be inhibited by antibodies which specifically interact with single-stranded DNA. This inhibition occurs at a time when the transformation reaction is insensitive to deoxyribonuclease. Studies with radioactive proteins revealed that the maximal binding of gamma globulin occurs immediately preceding the development of maximal competence in the population. Other proteins, such as deoxyribonuclease cytochrome c and serum albumin also adsorb to the surface of the cell. After treatment with lysozyme, 67% of the radioactive gamma globulin remains associated with the cytoplasmic membrane. These findings suggest that the DNA is complexed in a deoxyribonuclease-insensitive form to the surface of the cell and is converted to a single-stranded state prior to transport past the membrane and integration into the chromosome.  相似文献   

8.
Functional properties of the DNA-binding domain of the human glucocorticoid receptor were investigated using high titer polyclonal antibodies produced against single synthetic peptides or a mixture of peptides whose sequences were derived from the DNA-binding domain of steroid receptor proteins. Three of seven antisera recognized both native and denatured forms of the glucocorticoid receptor, although considerably lower antisera dilutions were required for antibody binding to native receptor. Activation of the glucocorticoid receptor to its DNA-binding form was required for antibody recognition of the native receptor. Antisera to the second finger region of the DNA-binding domain caused a portion of the activated 4S glucocorticoid receptor to sediment as 7 or 9S in sucrose gradients containing 0.4 M KCl, but did not alter the sedimentation of the nontransformed 8S receptor. Specificity of the glucocorticoid receptor-antibody interaction was demonstrated by loss of reactivity after preabsorption with peptide antigens. Antisera that interacted specifically with the glucocorticoid receptor inhibited DNA binding of the activated receptor by as much as 80%. Thus, antibody probes directed against DNA-binding domain sequences provide immunological evidence that glucocorticoid receptor activation exposes the DNA-binding region of the receptor.  相似文献   

9.
The interaction of SV40 T-antigen and viral DNA was studied by using adsorption of DNA-protein complexes on nitrocellulose filters. The T-antigen purification procedure included ion-exchange chromatography on DEAE-cellulose, selective adsorption of cellular proteins on single-stranded DNA-cellulose, chromatography on heparin-Sepharose and removal of cell proteins by an immunosorbent. Only the latter step allowed to remove the contamination of cellular DNA-binding proteins, judging from the reaction of T-antigen neutralization by specific antibodies. It was shown that T-antigen and cellular DNA-binding proteins interact with SV40 DNA at different values of pH, namely ah 6,0-6,4 and 7,9, respectively. The T-antigen obtained was passed through a column with native DNA-cellulose at pH and ionic strength values optimal for interaction with DNA. The bulk of T-antigen (30-40%) did not bind to native thymus DNA and did not interact with SV40 DNA. It is assumed that this fraction is a form of T-antigen, which undergoes structural or functional changes during specific interaction with viral or cellular DNAs.  相似文献   

10.
Neurofilaments were isolated from porcine spinal cord and separated into their subunit proteins (68 Kd NFP, 145 Kd NFP, 200 Kd NFP) by ion exchange chromatography on DEAE-cellulose in 6 M urea. The individual proteins were reacted with total rRNA from Ehrlich ascites tumor cells and the reaction products analysed by sucrose gradient centrifugation at low ionic strength and in the presence of EDTA. All three proteins interacted with rRNA with a preference for 18S rRNA. Competition experiments with native and heat-denatured calf thymus DNA showed that the affinities of the 68 Kd and 145 Kd NFPs were considerably higher for denatured DNA than for rRNA and that native DNA was only a weak competitor. The binding of the 200 Kd NFP to rRNA was unaffected by native and by denatured DNA. When denatured DNA was reacted with a mixture of the 68 Kd and 145 Kd NFPs, the two proteins interacted independently with the nucleic acid, giving rise to two different populations of deoxyribonucleoprotein particles. This segregation is the result of the cooperative interaction of the neurofilament proteins with single-stranded DNA. It could not be observed with rRNA or bacteriophage MS2 RNA. The results clearly show that the 68 Kd and 145 Kd NFPs are single-stranded RNA- and DNA-binding proteins, whereas the 200 Kd NFP seems to be only a single-stranded RNA-binding protein.  相似文献   

11.
Circular dichroism (CD) of serum alpha1-acid glycoprotein, urinary Bence Jones protein, human carbonic anhydrase B, deoxyribonuclease from bovine pancreas, porcine pepsinogen, and plasminogen from human serum was tested in the absence and presence of 0.005-0.05 M sodium dodecyl sulfate. It was found that in all cases the CD spectra of these proteins were modified by the dodecyl sulfate into spectra indicating the presence of a moderate content of alpha-helix. The transitions were enhanced by addition of acid (pH 2.1-4.4) in all cases tested. Comparison of the various proteins with respect to the amount of reconstruction of the main chain conformation showed that the amount of helix formed depended on the amino acid composition of the protein. Rigidity due to cross-linking by disulfide bridges is the strongest deterrant to the conformational change of the main chain. The CD bands of the native proteins in the 250-350 nm spectral zone were extinguished by sodium dodecyl sulfate, and new weak bands were observed the positions of which corresponded approximately to those of the native proteins. In all cases, except the carbonic anhydrase B, the bands of thus denatured proteins were negative.  相似文献   

12.
In analogy to the Escherichia coli replicative DNA polymerase III we define two forms of DNA polymerase alpha: the core enzyme and the holoenzyme. The core enzyme is not able to elongate efficiently primed single-stranded DNA templates, in contrast to the holoenzyme which functions well on in vivo-like template. Using these criteria, we have identified and partially purified DNA polymerase alpha holoenzyme from calf thymus and have compared it to the corresponding homogeneous DNA polymerase alpha (defined as the core enzyme) from the same tissue. The holoenzyme is able to use single-stranded parvoviral DNA and M13 DNA with a single RNA primer as template. The core enzyme, on the other hand, although active on DNAs treated with deoxyribonuclease to create random gaps, is unable to act on these two long, single-stranded DNAs. E. coli DNA polymerase III holoenzyme also copies the two in vivo-like templates, while the core enzyme is virtually inactive. The homologous single-stranded DNA-binding proteins from calf thymus and from E. coli stimulate the respective holoenzymes and inhibit the core enzymes. These results suggest a cooperation between a DNA polymerase holoenzyme and its homologous single-stranded DNA-binding protein. The prokaryotic and the mammalian holoenzyme behave similarly in several chromatographic systems.  相似文献   

13.
14.
During the final stages of phi X174 morphogenesis, there is an 8.5-A radial collapse of coat proteins around the packaged genome, which is tethered to the capsid's inner surface by the DNA-binding protein. Two approaches were taken to determine whether protein-DNA interactions affect the properties of the mature virion and thus the final stages of morphogenesis. In the first approach, genome-capsid associations were altered with mutant DNA-binding proteins. The resulting particles differed from the wild-type virion in density, native gel migration, and host cell recognition. Differences in native gel migration were especially pronounced. However, no differences in protein stoichiometries were detected. An extragenic second-site suppressor of the mutant DNA-binding protein restores all assayed properties to near wild-type values. In the second approach, phi X174 was packaged with foreign, single-stranded, covalently closed, circular DNA molecules identical in length to the phi X174 genome. The resulting particles exhibited native gel migration rates that significantly differed from the wild type. The results of these experiments suggest that the structure of the genome and/or its association with the capsid's inner surface may perform a scaffolding-like function during the procapsid-to- virion transition.  相似文献   

15.
Administration of Bordetella pertussis and some of their components to mice induced an increase of DNA-binding activity of the sera revealed under ionic strength conditions of physiological saline, mostly on the 14th day. It was shown by the inhibition method that interaction between mouse sera and native DNA was specific. Maximum increase in the quantity of mouse sera proteins reacting with DNA under low ionic strength condition of physiological saline (0.05 M NaCl) is revealed on the 7th day. However, in administration of Bordetella pertussis and their cytoplasmic membrane the elevated DNA-binding proteins content persisted up to 14 days.  相似文献   

16.
Proteins that bind to specific locations in genomic DNA control many basic cellular functions. Proteins detect their binding sites using both direct and indirect recognition mechanisms. Deformation energy, which models the energy required to bend DNA from its native shape to its shape when bound to a protein, has been shown to be an indirect recognition mechanism for one particular protein, integration host factor (IHF). This work extends the analysis of deformation to two other DNA-binding proteins, CRP and SRF, and two endonucleases, I-Crel and I-Ppol. Known binding sites for all five proteins showed statistically significant differences in mean deformation energy as compared to random sequences. Binding sites for the three DNA-binding proteins and one of the endonucleases had mean deformation energies lower than random sequences. Binding sites for I-Ppol had mean deformation energy higher than random sequences. Classifiers that were trained using the deformation energy at each base pair step showed good cross-validated accuracy when classifying unseen sequences as binders or nonbinders. These results support DNA deformation energy as an indirect recognition mechanism across a wider range of DNA-binding proteins. Deformation energy may also have a predictive capacity for the underlying catalytic mechanism of DNA-binding enzymes  相似文献   

17.
Increases in deoxyribonuclease activity assayed at alkaline pH can be observed in poxvirus-infected cells when native or denatured deoxyribonucleic acid (DNA) is used as substrate. The deoxyribonuclease assayable with native DNA as substrate, induced in HeLa cells by cowpoxvirus or vaccinia virus WR, can be separated from the corresponding enzyme present in normal cells by chromatography on diethylaminoethyl cellulose. In addition, the two enzymes induced in the virus-infected cells differ from each other in their chromatographic properties. The two induced enzymes have been further characterized with respect to properties of enzymatic reaction.  相似文献   

18.
19.
Recent studies have shown that Cdc6 is an essential regulator in the formation of DNA replication complexes. However, the biochemical nature of the Cdc6 molecule is still largely unknown. In this report, we present evidence that the Saccharomyces cerevisiae Cdc6 protein is a double-stranded DNA-binding protein. First, we have demonstrated that the purified yeast Cdc6 can bind to double-stranded DNA (dissociation constant approximately 1 x 10(-7) M), not to single-stranded DNA, and that the Cdc6 molecule is a homodimer in its native form. Second, we show that GST-Cdc6 fusion proteins expressed in Escherichia coli bind DNA in an electrophoretic mobility shift assay. Cdc6 antibodies and GST antibodies, but not preimmune serum, induce supershifts of GST-Cdc6 and DNA complexes in these assays, which also showed that GST-Cdc6 binds to various DNA probes without apparent sequence specificity. Third, the minimal requirement for the binding of Cdc6 to DNA has been mapped within its N-terminal 47-amino acid sequence (the NP6 region). This minimal binding domain shows identical DNA-binding properties to those possessed by full-length Cdc6. Fourth, the GST-NP6 protein competes for DNA binding with distamycin A, an antibiotic that chelates DNA within the minor groove of the A+T-rich region. Finally, site-direct mutagenesis studies revealed that the (29)KRKK region of Cdc6 is essential for Cdc6 DNA-binding activity. To further elucidate the function of Cdc6 DNA binding in vivo, we demonstrated that a binding mutant of Cdc6 fails to complement either cdc6-1 temperature-sensitive mutant cells or Deltacdc6 null mutant cells at the nonpermissive temperature. The mutant gene also conferred growth impairments and increased the plasmid loss in its host, indicative of defects in DNA synthesis. Because the mutant defective in DNA binding also fails to stimulate Abf1 ARS1 DNA-binding activity, our results suggest that Cdc6 DNA-binding activity may play a pivotal role in the initiation of DNA replication.  相似文献   

20.
Three new proteins which selectively bind to UV-damaged DNA were identified and purified to near homogeneity from UV-irradiated Drosophila melanogaster embryos through several column chromatographies. These proteins, tentatively designated as D-DDB P1, P2 and P3, can be identified as different complex bands in a gel shift assay by using UV-irradiated TC-31 probe DNA. Analysis of the purified D-DDB P1 fraction by native or SDS-polyacrylamide gel electrophoresis and FPLC-Superose 6 gel filtration demonstrated that it is a monomer protein which is a 30 kDa polypeptide. The D-DDB P2 protein is a monopolypeptide with a molecular mass of 14 kDa. Both D-DDB P1 and P2 highly prefer binding to UV-irradiated DNA, and have almost no affinity for non-irradiated DNA. Gel shift assays with either UV-irradiated DNA probes demonstrated that D-DDB P1 may show a preference for binding to (6-4) photoproducts, while D-DDB P2 may prefer binding to pyrimidine dimers. Both these proteins require magnesium ions for binding. D-DDB P1 is an ATP-preferent protein. These findings are discussed in relation to two recently described [Todo and Ryo (1991) Mutat. Res., 273, 85-93; Todo et al. (1993) Nature, 361, 371-374] DNA-binding factors from Drosophila cell extracts. A possible role for these DNA-binding proteins in lesion recognition and DNA-binding proteins in lesion recognition and DNA repair of UV-induced photo-products is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号