首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The idea that free‐living minute organisms have ubiquitous distributions has been recently revitalized, causing significant controversy. The ubiquitous model predicts that a threshold where ubiquity leaves room to biogeography might exist somewhere along the animal body‐size range. In the present study, such a prediction is tested by analysing body‐size frequency distribution, species distribution, and local‐to‐global species ratio at the scale of biogeographical realms in cypridoidean non‐marine ostracods, a group with a body‐size range in the ubiquity–biogeography (U‐B) boundary. Data were gathered for all described extant cypridoidean ostracod species (N = 1761), with body‐size recorded for 1134 of them. Although local‐to‐global species ratios show significant over‐dispersal of small‐body ostracods for the Palaearctic and the Australasian regions, there are explanations alternative to the ‘Everything is Everywhere’ model that can account for such a result. Indicators of taxonomic structure do not support the hypothesis of a random distribution of cypridoidean species among realms. Nevertheless, the strong biogeography signal occurring at a large scale vanishes at the local scale (country‐level within the Palaearctic), and suggests wide dispersion within biogeographical realms. Additional factors, including inconsistent taxonomic criteria for species recognition, uneven sampling effort, and an excess of ‘single‐report’ occurrences, have been identified too as potential distorters of the observed patterns. Taxonomic harmonization, open databases of biogeographical data, and better ecological information are suggested as critical goals that need to be achieved for further understanding of ostracod global distribution patterns. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 409–423.  相似文献   

2.
Fierce debate surrounds the history of organisms in the southern hemisphere; did Gondwanan break-up produce ocean barriers that imposed distribution patterns on phylogenies (vicariance)? Or have organisms modified their distributions through trans-oceanic dispersal? Recent advances in biogeographical theory suggest that the current focus on vicariance versus dispersal is too narrow because it ignores 'geodispersal' (i.e. expansion of species into areas when geographical barriers disappear), extinction and sampling errors. Geodispersal produces multiple, conflicting vicariance patterns, and extinction and sampling errors destroy vicariance patterns. This perspective suggests that it is more difficult to detect vicariance than trans-oceanic dispersal and that specialized methods must be applied if an unbiased understanding of southern hemisphere biogeography is to be achieved.  相似文献   

3.

Background

Biogeographical and macroecological principles are derived from patterns of distribution in large organisms, whereas microscopic ones have often been considered uninteresting, because of their supposed wide distribution. Here, after reporting the results of an intensive faunistic survey of marine microscopic animals (meiofauna) in Northern Sardinia, we test for the effect of body size, dispersal ability, and habitat features on the patterns of distribution of several groups.

Methodology/Principal Findings

As a dataset we use the results of a workshop held at La Maddalena (Sardinia, Italy) in September 2010, aimed at studying selected taxa of soft-bodied meiofauna (Acoela, Annelida, Gastrotricha, Nemertodermatida, Platyhelminthes and Rotifera), in conjunction with data on the same taxa obtained during a previous workshop hosted at Tjärnö (Western Sweden) in September 2007. Using linear mixed effects models and model averaging while accounting for sampling bias and potential pseudoreplication, we found evidence that: (1) meiofaunal groups with more restricted distribution are the ones with low dispersal potential; (2) meiofaunal groups with higher probability of finding new species for science are the ones with low dispersal potential; (3) the proportion of the global species pool of each meiofaunal group present in each area at the regional scale is negatively related to body size, and positively related to their occurrence in the endobenthic habitat.

Conclusion/Significance

Our macroecological analysis of meiofauna, in the framework of the ubiquity hypothesis for microscopic organisms, indicates that not only body size but mostly dispersal ability and also occurrence in the endobenthic habitat are important correlates of diversity for these understudied animals, with different importance at different spatial scales. Furthermore, since the Western Mediterranean is one of the best-studied areas in the world, the large number of undescribed species (37%) highlights that the census of marine meiofauna is still very far from being complete.  相似文献   

4.
Aim To assess the hypothesis that free‐living prokaryotes show a pattern of ‘no biogeography’ by examining the scaling of soil prokaryotic diversity and by comparing it with other groups’ biogeographical patterns. Location Two sites in the tropical deciduous forest of Chamela, Jalisco, on the western coast of Mexico. Methods We examined the diversity and distribution of soil prokaryotes in two 8 × 8 m quadrats divided in such manner that we could sample at four spatial scales. Restriction fragment length polymorphisms of 16S rRNA genes were used to define operational taxonomic units (OTUs) that we used in lieu of species to assess diversity. Results We found highly structured species assemblages that allowed us to reject multiple predictions of the hypothesis that soil bacteria show ‘no biogeography’. The frequency distribution of range size (measured as the occupancy of quadrats) of OTUs followed a hollow curve similar to that of vertebrates on continents. Assemblages showed high levels of beta diversity and a non‐random nested pattern of diversity. OTU diversity scaled with area followed a power function with slopes z = 0.42 and 0.47. Main conclusions We demonstrate a non‐ubiquitous dispersal for soil prokaryotes, which suggests a complex biogeography similar to that found for terrestrial vertebrates.  相似文献   

5.
Aim To analyse how important body size is for geographic variation in microscopic organisms in the marine environment and thereby determine the validity of the ‘everything is everywhere’ hypothesis. Location Marine environments, globally. Methods Studies on geographic variation in all marine eukaryotes smaller than 1 mm and all marine copepods were compiled from the literature and incorporated in multiple binomial regressions to analyse the effect of body size, lifestyle, environmental isolation and taxonomic affinity on the probability of different regions being reciprocally monophyletic. Sample size was also analysed, because a negative relationship between sample size and probability of being reciprocally monophyletic would indicate biases due to undersampling in the original studies. Separate analyses were performed for three potential types of barriers to gene flow for marine organisms (the water barrier of the middle of the oceans, the temperature barrier of the equator, and the land barrier of the continents). Results Environmental isolation was the only variable in the best‐fitting model for the probability of populations from each side of an ocean being reciprocally monophyletic. The estimated importance of body size was quite large and the lack of this variable in the best‐fitting model may be a power issue due to the small sample size (n= 40). Both environmental isolation and body size were important for the probability of monophyletic populations in different hemispheres. The analysis of isolation between different oceans did not produce clear results. The relationship between sample intensity and probability of being reciprocally monophyletic was positive for the isolation between different oceans and non‐existent for the two other analyses. Main conclusions The results showed that body size was an important factor governing the potential for geographic variation but not the only important factor by far. These results clearly weaken the ‘everything is everywhere’ hypothesis as they showed that microscopic organisms may have geographic variation, albeit to a lesser degree than larger organisms.  相似文献   

6.
Aim Provide an empirical test of the ‘radiation zone’ hypothesis of the MacArthur–Wilson theory of island biogeography using the taxon‐pulse hypothesis of Erwin and Brooks Parsimony Analysis (BPA) on Simulium (Inseliellum) Rubstov. Location Micronesia, Cook Islands, Austral Islands, Society Islands, Marquesas Islands, Fiji and New Caledonia. Methods Primary and secondary BPA of the phylogeny of Inseliellum. Results Primary BPA showed that 15% of the taxon area cladogram contained area reticulations. Secondary BPA (invoking the area duplication convention) generated a clear sequence of dispersal for Inseliellum. The sequence follows a Micronesia – Cook Islands – Marquesas Islands – Society Islands dispersal, with a separate dispersal from the Cook Islands to the Austral Islands less than 1 Ma. A radiation in the island of Tahiti (Society Islands) produced numerous dispersals from Tahiti to other islands within the Society Islands system. Islands close to Tahiti (source island) have been colonized from Tahiti more often than islands far from Tahiti, but a higher proportion of those species colonizing distant islands have become distinct species. Main conclusions The dispersal sequence of Inseliellum exhibits both old to young island dispersal and young to old island dispersal. This is due to habitat availability on each island. Inseliellum is a model system in exemplifying the ‘radiation zone’ hypothesis of MacArthur and Wilson. As well, islands close to the source are colonized more often that those far from the source, but colonization of islands far away from the source results in a higher proportion of speciation events than for islands close to the source. The diversification of Inseliellum corresponds to a taxon‐pulse radiation, with a centre of diversification on Tahiti resulting from its large area and abundant freshwater habitats. This study illustrates the utility of BPA in identifying complex scenarios that can be used to test theories about the complementary roles of ecology and phylogeny in historical biogeography.  相似文献   

7.
The Baas-Becking's hypothesis, also known by the term 'everything is everywhere' (EisE), states that microscopic organisms such as bacteria and protists are globally distributed and do not show biogeographical patterns, due to their high dispersal potential. We tested the prediction of the EisE hypothesis on bdelloid rotifers, microscopic animals similar to protists in size and ecology that present one of the best cases among animals for the plausibility of global dispersal. Geographical range sizes and patterns of isolation by distance were estimated for global collections of the genera Adineta and Rotaria, using different taxonomic units: (i) traditional species based on morphology, (ii) the most inclusive monophyletic lineages from a cytochrome oxidase I phylogeny comprising just a single traditional species, and (iii) genetic clusters indicative of independently evolving lineages. Although there are cases of truly cosmopolitan distribution, even at the most finely resolved taxonomic level, most genetic clusters are distributed at continental or lower scales. Nevertheless, although 'everything is not everywhere', bdelloid rotifers do display broad distributions typical of those of other microscopic organisms. Broad dispersal and large population sizes might be factors lessening the evolutionary cost of long-term abstinence from sexual reproduction in this famous group of obligate parthenogens.  相似文献   

8.
It is well known that Darwin and Wallace came to discover the phenomenon of evolution through a historical approach to the geographical distribution of organisms. Before Darwin, evolution was a mere speculation that could be invoked to explain some facts. Darwin's biogeographical argument for evolution is based largely on three main explanatory hypotheses. The first is that the geographical distribution of organisms is historically informative. The second hypothesis is that long-distance dispersal over barriers is one main force (extinction is the other) that modifies the distribution of organisms. The third of Darwin's biogeographical hypotheses is that the factors that shape the distribution of organisms are mainly historical (large, often global and long temporal scales) rather than ecological (small spatial and short temporal scales). From the time of Darwin until now, a wide spectrum of biogeographical schools have provided new insights that challenge the central role of space, dispersal and history as the main explanatory hypotheses for the distribution of organisms, generating three binary opposites: (1) the spatial dimension of evolution: geographical distribution of organisms as historically informative vs. historically uninformative; (2) the processes that modify the geographical distribution of organisms: dispersal vs. vicariance; and (3) the explanation of geographical distribution: history vs. ecology. We analyse these three binary opposites to show that the components of each are complementary rather than antagonistic approaches to the study of biogeography.  相似文献   

9.
Species’ geographic distributions shape global patterns of biodiversity and therefore have long been of interest to ecology and conservation. Theory has generated valuable hypotheses about how landscape structure, dispersal, biotic interactions and evolution shape range dynamics, but most predictions have not been tested on real organisms because key variables are difficult to isolate, replicate or manipulate in natural ecosystems. An exciting and rapidly emerging approach is to extend classical microcosm and mesocosm systems to create experimental ‘micro-landscapes’. By enabling researchers to manipulate geographic features of interest, replicate landscapes, control colonization and follow dynamics across evolutionary timescales, micro-landscapes allow explicit tests of the ecological and evolutionary underpinnings of species distributions. Here we review the micro-landscape systems being used to advance biogeography, the major insights they have generated thus far, and the features that limit their application to some scenarios. We end by highlighting important questions about species’ biogeography that are ripe for testing with experimental micro-landscapes, particularly those of immediate concern given rapid global change, such as range contractions and constraints to range expansion.  相似文献   

10.
The voice of historical biogeography   总被引:2,自引:0,他引:2  
Historical biogeography is going through an extraordinary revolution concerning its foundations, basic concepts, methods, and relationships to other disciplines of comparative biology. There are external and internal forces that are shaping the present of historical biogeography. The external forces are: global tectonics as the dominant paradigm in geosciences, cladistics as the basic language of comparative biology and the biologist's perception of biogeography. The internal forces are: the proliferation of competing articulations, recourse to philosophy and the debate over fundamentals. The importance of the geographical dimension of life's diversity to any understanding of the history of life on earth is emphasized. Three different kinds of processes that modify the geographical spatial arrangement of the organisms are identified: extinction, dispersal and vicariance. Reconstructing past biogeographic events can be done from three different perspectives: (1) the distribution of individual groups (taxon biogeography) (2) areas of endemism (area biogeography), and (3) biotas (spatial homology). There are at least nine basic historical biogeographic approaches: centre of origin and dispersal, panbiogeography, phylogenetic biogeography, cladistic biogeography, phylogeography, parsimony analysis of endemicity, event-based methods, ancestral areas, and experimental biogeography. These nine approaches contain at least 30 techniques (23 of them have been proposed in the last 14 years). The whole practice and philosophy of biogeography depend upon the development of a coherent and comprehensive conceptual framework for handling the distribution of organisms and events in space.  相似文献   

11.
Aim The aim of this study is to answer the questions: (1) do small organisms disperse farther than large, or vice versa; and (2) does the observed pattern differ for passive and active dispersers? These questions are central to several themes in biogeography (including microbial biogeography), macroecology, metacommunity ecology and conservation biology. Location The meta‐analysis was conducted using published data collected worldwide. Methods We collected and analysed 795 data values in the peer‐reviewed literature for direct observations of both maximal dispersal distance and mass of the dispersing organisms (e.g. seeds, not trees). Analysed taxa ranged in size from bacteria to whales. We applied macroecology analyses based on null models (using Monte Carlo randomizations) to test patterns relative to specific hypotheses. Results Collected dispersal distance and mass data spanned 9 and 21 orders of magnitude, respectively. Active dispersers dispersed significantly farther (P < 0.001) and were significantly greater in mass (P < 0.001) than passive dispersers. Overall, size matters: larger active dispersers attained greater maximum observed dispersal distances than smaller active dispersers. In contrast, passive‐disperser distances were random with respect to propagule mass, but not uniformly random, in part due to sparse data available for tiny propagules. Conclusions Size is important to maximal dispersal distance for active dispersers, but not for passive dispersers. Claims that microbes disperse widely cannot be tested by current data based on direct observations of dispersal: indirect approaches will need to be applied. Distance–mass relationships should contribute to a resolution of neutral and niche‐based metacommunity theories by helping scale expectations for dispersal limitation. Also, distance–mass relationships should inform analyses of latitudinal species richness and conservation biology topics such as fragmentation, umbrella species and taxonomic homogenization.  相似文献   

12.
1. Recent findings hint at the potential importance of mammals affecting the spatial dynamics of aquatic organisms in areas where mammals live in close association with water. Perhaps the most iconic example of such an environment is the African savannah. 2. We investigated dispersal patterns of freshwater organisms among a set of temporary ponds in SE Zimbabwe to test the hypothesis that large mammals, and particularly African elephants (Loxodonta africana), can be important vectors of aquatic organisms. Dispersal kernels were reconstructed by hatching mud collected from ‘rubbing’ trees located at increasing distances from a set of isolated ponds. To assess the relative importance of other mammalian vectors, the vertical distribution of mud on rubbing trees was mapped and related to the body size of candidate vector species. 3. Laboratory hatching of mud samples revealed large numbers of propagules of 22 invertebrate taxa as well as some aquatic macrophytes. Dispersing communities reflected source communities and diverged with increasing distance from the source. Both dispersal rates and richness of transported taxa decreased significantly with dispersal distance. No indications for differences in dispersal capacity among propagule types were detected. Instead, common propagules were more likely to travel greater distances. Most mud was attached to trees at heights >1.5 m, implicating elephants as the dominant vector. Vertical distributions of tree mud, however, also revealed clustering at heights up to 50 cm and 90–120 cm corresponding to the height of warthog, rhinoceros and buffalo, respectively. Finally, variation in the vertical distribution of mud on trees in combination with differences in vector vagility suggests that local differences in vector species composition may affect passive dispersal dynamics of aquatic organisms. 4. Based on vagility and vector load, mud‐wallowing mammals emerge as highly effective vectors that, in some areas, may be more important in transporting aquatic organisms than traditionally recognised vectors such as waterbirds. Since most large‐ and medium‐sized mammals currently have restricted geographic distributions, it is likely that mammal‐mediated dispersal was more important in the past.  相似文献   

13.
It has been stated that small organisms do not have barriers for distribution and will not show biogeographic discreteness. General models for size-mediated biogeographies establish a transition region between ubiquitous dispersal and restricted biogeography at about 1–10 mm. We tested patterns of distribution versus size with water mites, a group of freshwater organisms with sizes between 300 μm and 10 mm.We compiled a list of all known water mite species for Sierra del Guadarrama (a mountain range in the centre of the Iberian Peninsula) from different authors and our own studies in the area. Recorded habitats include lotic, lentic and interstitial environments. Species body size and world distribution were drawn from our work and published specialized taxonomic literature. The null hypothesis was that distribution is size-independent. The relationship between distribution and size was approached via analysis of variance and between size and habitat via logistic regression. Contrary to expectations, there is no special relationship between water mite size and area size distribution. On the other hand, water mite size is differentially distributed among habitats, although this ecological sorting is very weak. Larger water mites are more common in lentic habitats and smaller water mites in lotic habitats. Size-dependent distribution in which small organisms tend to be cosmopolitan breaks down when the particular biology comes into play. Water mites do not fit a previously proposed size-dependent biogeographical distribution, and are in accordance with similar data published on Tardigrada, Rotifera, Gastrotricha and the like.  相似文献   

14.
Vicariance biogeography emerged several decades ago from the fusion of cladistics and plate tectonics, and quickly came to dominate historical biogeography. The field has since been largely constrained by the notion that only processes of vicariance and not dispersal offer testable patterns and refutable hypotheses, dispersal being a random process essentially adding only noise to a vicariant system. A consequence of this thinking seems to have been a focus on the biogeography of continents and continental islands, considering the biogeography of oceanic islands less worthy of scientific attention because, being dependent on stochastic dispersal, it was uninteresting. However, the importance of dispersal is increasingly being recognized, and here we stress its fundamental role in the generation of biodiversity on oceanic islands that have been created in situ , never connected to larger land masses. Historical dispersal patterns resulting in modern distributions, once considered unknowable, are now being revealed in many plant and animal taxa, in large part through the analysis of polymorphic molecular markers. We emphasize the profound evolutionary insights that oceanic island biodiversity has provided, and the fact that, although small in area, oceanic islands harbour disproportionately high biodiversity and numbers of endemic taxa. We further stress the importance of continuing research on mechanisms generating oceanic island biodiversity, especially detection of general, non-random patterns of dispersal, and hence the need to acknowledge oceanic dispersal as significant and worthy of research.  相似文献   

15.
The number of extant species of diatoms is estimated here to be at least 30,000 and probably ca. 100,000, by extrapolation from an eclectic sample of genera and species complexes. Available data, although few, indicate that the pseudocryptic species being discovered in many genera are not functionally equivalent. Molecular sequence data show that some diatom species are ubiquitously dispersed. A good case can be made that at least some diatom species and even a few genera are endemics, but many such claims are still weak. The combination of very large species numbers and relatively rapid dispersal in diatoms is inconsistent with some versions of the “ubiquity hypothesis” of protist biogeography, and appears paradoxical. However, population genetic data indicate geographical structure in all the (few) marine and freshwater species that have been examined in detail, sometimes over distances of a few tens of kilometres. The mode of speciation may often be parapatric, in the context of a constantly shifting mosaic of temporarily isolated (meta) populations, but if our “intermediate dispersal hypothesis” is true (that long‐distance dispersal is rare, but not extremely rare), allopatric speciation could also be maximized.  相似文献   

16.
Aim It is generally believed that communities of small organisms, or those with small propagules, are structured mainly by local niche‐based processes, and less by dispersal limitation. Conversely, weaker environmental and stronger spatial structure, indicating dispersal limitation, are expected to occur more frequently in communities of large organisms. However, this hypothesis has rarely been tested by comparing spatial and environmental effects across groups of organisms of different size (or with different size of propagules) sampled at the same set of sites. Here, we test it in urban environments. Location Thirty‐two cities in 10 countries of Central Europe and Benelux. Methods We compared effects of spatial location and climate on species composition of different groups of organisms sampled in corresponding types of urban habitats. The studied groups were: (1) subaerial cyanobacteria and algae, (2) vascular plants, (3) land snails; and subgroups of vascular plants with different life form and dispersal mode, namely: (4) herbs, (5) animal‐dispersed trees and shrubs, and (6) wind‐dispersed trees and shrubs. Data were analysed by variation partitioning based on redundancy analysis (RDA) with principal coordinates of neighbour matrices (PCNM). Eighteen PCNM eigenvectors (expressing spatial effects) and mean annual temperature, July–January temperature difference and annual precipitation sum (expressing environmental effects) were used as explanatory variables. Results Pure effects of climate on species composition, indicating niche‐based processes, were not significant for any group or subgroup of the studied organisms. In contrast, pure effects of space, indicating dispersal limitation, were significant for all groups and subgroups except herbs. Surprisingly, the community of cyanobacteria/algae possessed much stronger spatial structure independent of climate than communities of larger organisms, although cyanobacteria/algae had the lowest beta diversity among the studied cities. Main conclusions We hypothesize that the community of subaerial cyanobacteria/algae is structured by natural processes which involve dispersal limitation, whereas communities of urban plants and snails are influenced by human‐assisted dispersal of their propagules between cities, which results in weaker dispersal limitation. Our study indicates that dispersal vectors can be more important for community structure than size of organisms or of their propagules.  相似文献   

17.
Here, we review progress and prospects to explicitly test for long distance dispersal biogeographic events. Long distance dispersal represents a “jump” across some kind of barrier, such as a topographic feature or a zone of unsuitable climate and may include repeated jumps, or stepping‐stone dispersals. Long distance dispersals were considered integral for explaining the organization of biodiversity at large and small scales by early biogeographers, such as Darwin and Wallace. Darwin, Wallace, and others envisioned that long distance dispersals were predictable events because the vectors for dispersal, such as animals, winds, and currents, behaved in non‐random ways. However, these early biogeographers found that dispersal was hard to observe, and, later, with the advent of the theory of Continental Drift, vicariance became regarded as a better scientific explanation for the arrangement of biodiversity, because it represented a falsifiable hypothesis. Thus, long distance dispersal was reduced to a nuisance parameter in biogeography; a random possibility that could never fully be ruled out in a scenario in which evidence supported vicariance. Today, there is strong interest to more fully integrate long distance dispersal into understanding the assembly and organization of biodiversity on earth. In this review, we discuss progress and prospects for explicitly testing long distance dispersal hypotheses including through uses of molecular, morphological, paleontological, and informatics methods. We focus on hypothesis testing of long distance dispersals involved in the assembly of the flora of North America, which is a robust preliminary study system on account of its extant and extinct biodiversity being well‐catalogued.  相似文献   

18.
Proliferation of redundant terms in ecology and conservation slows progress and creates confusion. ‘Countryside biogeography’ has been promoted as a new framework for conservation in production landscapes, so may offer a replacement for other concepts used by landscape ecologists. We conducted a systematic review to assess whether the 'countryside biogeography' concept provides a distinctive framing for conservation in human‐dominated landscapes relative to existing concepts. We reviewed 147 papers referring to countryside biogeography and 81 papers that did not. These papers were divided into categories representing three levels of use of countryside biogeography concepts (strong, weak, cited only) and two categories that did not use countryside biogeography at all but used similar concepts including fragmentation and matrix. We revealed few distinctions among groups of papers. Countryside biogeography papers made more frequent use of the terms 'ecosystem services', 'intensification' and 'land sparing' compared with non‐countryside biogeography papers. Papers that did not refer to countryside biogeography sampled production areas (e.g. farms) less often, and this related to their focus on habitat specialist species for which patch‐matrix assumptions were reasonable. Countryside biogeography offers a conceptual wrapper rather than a distinctive framework for advancing research in human‐modified landscapes. This and similar wrappers such as ‘conservation biogeography’ and ‘agricultural biogeography’ risk creating confusion among new researchers, and can prevent clear communication about research. To improve communication, we recommend using the suite of well‐established terms already applied to conservation in human‐modified landscapes rather than through an interceding conceptual wrapper.  相似文献   

19.
There is mounting evidence for the non-analogue nature of Late Glacial (18,000–11,700 years BP) ecosystems. Several dispersal episodes of human forager groups moving into previously uninhabitable glacial or periglacial landscapes also occurred during this period. In palaearctic northern Europe, these dispersals are associated with a succession of archaeological technocomplexes that are traditionally thought to reflect changing adaptation strategies synchronised with contemporaneous environmental changes. Recent investigations into ecological disequilibrium dynamics suggest, however, that there may be a greater degree of mismatch between organisms and their environments, especially in arctic-type environments and during times of rapidly changing climate. We link these climatic changes to cultural changes via demographic inference. Based on recent dating evidence, environmental analyses and preliminary morphometric and technological analyses of lithic material, we infer that Late Glacial Palearctic foragers, similarly at disequilibrium and with very low population densities, were prone to regional extinction episodes. We focus in particular on ‘Hamburgian’ culture and its potentially failed dispersal into southern Scandinavia. In conclusion, we suggest avenues for further testing this hypothesis of regional extinction.  相似文献   

20.
Biodiversity conservation is confronted with increasing risk of extinction in isolated small-area remnants and the limitation of species to colonize recently formed habitats. We hypothesized that the equilibrium pattern of forest herb layer in long-term fragmented landscape should comply with the theory of island biogeography. Forests on mineral soil islands located in large mires of western Estonia were considered as dispersal target habitats, and forests on mainland and peninsulas in mires as sources. Species richness was the lowest in mainland forests and the effect was confounded by habitat structure, suggesting a negative effect of silvicultural management in easily accessible forests. We observed the ‘small island effect’, i.e. greater overall species richness in small-area habitats, which was determined by the habitat preference of shade tolerant generalists. The average species richness of common mainland forest specialists varied little, but capitalizing on the traditional approach and analyzing only island data, weak effects of distance and habitat quality were detected. At single species level, unexpectedly, many habitat specialists were observed to have successfully dispersed to islands, indicating insufficient knowledge of the long-distance dispersal mechanisms of forest-dwelling plants. In fragmented forest landscapes the theory of island biogeography can be applied to habitat specialist plant species, but only regarding the effect of isolation and in conditions of persistent forest structural quality. In the light of global changes, optimized conservation planning should primarily target on (i) the conservation of ancient habitat fragments independent of their current area, and (ii) the promotion of diversity of potential dispersal vectors in the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号