首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 700 毫秒
1.
Telocytes (TCs) are a particular type of interstitial (stromal) cells defined by very long, moniliform telopodes. Their tissue location, between blood vessels and other cells such as cardiomyocytes (CMC) and neurons, suggests a role in intercellular signalling. In order to define a microRNA (miR) signature in cardiac TCs, we have found that miR-193 is differentially expressed between TCs and other interstitial cells. Because miR-193 regulates c-kit, our data support the previous finding that TCs express c-kit in certain circumstances. In addition, the miRs which are specific to CMC and other muscle cells (e.g. miR-133a, miR-208a) are absent in TCs. Overall the data reinforce the view that TCs are a particular type of interstitial (mesenchymal) cells.  相似文献   

2.
Telocytes (TCs) form a cardiac network of interstitial cells. Our previous studies have shown that TCs are involved in heterocellular contacts with cardiomyocytes and cardiac stem/progenitor cells. In addition, TCs frequently establish 'stromal synapses' with several types of immunoreactive cells in various organs ( www.telocytes.com ). Using electron microscopy (EM) and electron microscope tomography (ET), we further investigated the interstitial cell network of TCs and found that TCs form 'atypical' junctions with virtually all types of cells in the human heart. EM and ET showed different junction types connecting TCs in a network (puncta adhaerentia minima, processus adhaerentes and manubria adhaerentia). The connections between TCs and cardiomyocytes are 'dot' junctions with nanocontacts or asymmetric junctions. Junctions between stem cells and TCs are either 'stromal synapses' or adhaerens junctions. An unexpected finding was that TCs have direct cell-cell (nano)contacts with Schwann cells, endothelial cells and pericytes. Therefore, ultrastructural analysis proved that the cardiac TC network could integrate the overall 'information' from vascular system (endothelial cells and pericytes), nervous system (Schwann cells), immune system (macrophages, mast cells), interstitium (fibroblasts, extracellular matrix), stem cells/progenitors and working cardiomyocytes. Generally, heterocellular contacts occur by means of minute junctions (point contacts, nanocontacts and planar contacts) and the mean intermembrane distance is within the macromolecular interaction range (10-30 nm). In conclusion, TCs make a network in the myocardial interstitium, which is involved in the long-distance intercellular signaling coordination. This integrated interstitial system appears to be composed of large homotropic zones (TC-TC junctions) and limited (distinct) heterotropic zones (heterocellular junctions of TCs).  相似文献   

3.
The prostate comprises a glandular epithelium embedded within a fibromuscular stroma. The stroma is a complex arrangement of cells and extracellular matrix (ECM) components in addition to growth factors, regulatory molecules, remodelling enzymes, blood vessels, nerves and immune cells. The principal sources of ECM components are fibroblasts and smooth muscle cells (SMC), which synthesize the structural and regulatory components of the ECM. Telocytes (TCs) were recently described as a novel stromal cell type that exhibited characteristic features. The aim of this study was to confirm the presence of TCs in prostate stromal tissue of gerbils, as the stromal compartment of this gland is a dynamic microenvironment. We used transmission electron microscopy (TEM), light microscopy and immunohistochemistry methods to provide morphological evidence for the presence of TCs. Cells that resembled TCs were observed in gerbil prostatic stroma. These cells had small cellular bodies with very thin and extremely long cellular processes. They were found primarily in the subepithelial area and also at the periphery of SMC layers. TCs also exhibited moniliform processes, caveolae and nuclei surrounded by small amounts of cytoplasm. Close contacts between TC podomers were evident, particularly in the adjacent epithelial compartment. This morphological evidence supported the presence of TCs in the gerbil prostatic stroma, which we report for the first time.  相似文献   

4.
Skeletal muscle interstitium is crucial for regulation of blood flow, passage of substances from capillaries to myocytes and muscle regeneration. We show here, probably, for the first time, the presence of telocytes (TCs), a peculiar type of interstitial (stromal) cells, in rat, mouse and human skeletal muscle. TC features include (as already described in other tissues) a small cell body and very long and thin cell prolongations-telopodes (Tps) with moniliform appearance, dichotomous branching and 3D-network distribution. Transmission electron microscopy (TEM) revealed close vicinity of Tps with nerve endings, capillaries, satellite cells and myocytes, suggesting a TC role in intercellular signalling (via shed vesicles or exosomes). In situ immunolabelling showed that skeletal muscle TCs express c-kit, caveolin-1 and secrete VEGF. The same phenotypic profile was demonstrated in cell cultures. These markers and TEM data differentiate TCs from both satellite cells (e.g. TCs are Pax7 negative) and fibroblasts (which are c-kit negative). We also described non-satellite (resident) progenitor cell niche. In culture, TCs (but not satellite cells) emerge from muscle explants and form networks suggesting a key role in muscle regeneration and repair, at least after trauma.  相似文献   

5.
Telocytes (TCs)/CD34+ stromal cells have recently emerged as peculiar interstitial cells detectable in a variety of organs throughout the human body. TCs are typically arranged in networks establishing unique spatial relationships with neighbour cells and likely contributing to the maintenance of tissue homeostasis by both cell-to-cell contacts and releasing extracellular vesicles. Hence, TC defects are being increasingly reported in different pathologies, such as chronic inflammatory and fibrotic conditions. In this regard, TCs/CD34+ stromal cells have been shown to constitute an intricate interstitial network in the subintimal area of the normal human synovial membrane, but whether they are altered in chronic synovitis has yet to be explored. We therefore undertook a morphologic study to compare the distribution of TCs/CD34+ stromal cells between normal synovium and chronically inflamed synovium from patients with rheumatoid arthritis (RA) by using CD34 immunohistochemistry and CD31/CD34 double immunofluorescence. CD34 immunostaining revealed that, at variance with normal synovium, the inflamed and hyperplastic RA synovial tissue was nearly or even completely devoid of TCs/CD34+ stromal cells. Double immunofluorescence confirmed that almost all CD34+ tissue components detectable in RA synovium were blood vessels coexpressing CD31, while a widespread network of CD31/CD34+ TCs was clearly evident in the whole sublining layer of normal synovium. In the context of the emerging diverse roles of TCs/CD34+ stromal cells in the regulation of tissue homeostasis and structure, the remarkable impairment in their networks herein uncovered in RA synovium may suggest important pathophysiologic implications that will be worth investigating further.  相似文献   

6.
Telocytes (TCs) represent a new cell type recently described in mammalian skeletal muscle interstitium as well as in other organs. These have a specific morphology and phenotype, both in situ and in vitro. Telocytes are cells with long and slender cell prolongations, in contact with other interstitial cells, nerve fibres, blood capillaries and resident stem cells in niches. Our aim was to investigate the potential contribution of TCs to micro-vascular networks by immunofluorescent labelling of specific angiogenic growth factors and receptors. We found that in human skeletal muscle TCs were constantly located around intermediate and small blood vessels and endomysial capillaries. Epi-fluorescence and laser confocal microscopy showed that TCs express c-kit, platelet-derived growth factor receptor (PDGFR)-β and VEGF, both in situ and in vitro. Telocytes were constantly located in the perivascular or pericapillary space, as confirmed by double staining of c-kit/CD31, PDGFR-β/CD31 and PDGFR-β/α-smooth muscle actin, respectively. Electron microscopy (EM) differentiated between pericytes and other cell types. Laminin labelling showed that TCs are not enclosed or surrounded by a basal lamina in contrast to mural cells. In conclusion, a) PDGFR-β could be used as a marker for TCs and b) TCs are presumably a transitional population in the complex process of mural cell recruitment during angiogenesis and vascular remodelling.  相似文献   

7.
Telocytes (TCs) are interstitial cells that are present in numerous organs, including the heart interstitial space and cardiac stem cell niche. TCs are completely different from fibroblasts. TCs release extracellular vesicles that may interact with cardiac stem cells (CSCs) via paracrine effects. Data on the secretory profile of TCs and the bidirectional shuttle vesicular signalling mechanism between TCs and CSCs are scarce. We aimed to characterize and understand the in vitro effect of the TC secretome on CSC fate. Therefore, we studied the protein secretory profile using supernatants from mouse cultured cardiac TCs. We also performed a comparative secretome analysis using supernatants from rat cultured cardiac TCs, a pure CSC line and TCs‐CSCs in co‐culture using (i) high‐sensitivity on‐chip electrophoresis, (ii) surface‐enhanced laser desorption/ionization time‐of‐flight mass spectrometry and (iii) multiplex analysis by Luminex‐xMAP. We identified several highly expressed molecules in the mouse cardiac TC secretory profile: interleukin (IL)‐6, VEGF, macrophage inflammatory protein 1α (MIP‐1α), MIP‐2 and MCP‐1, which are also present in the proteome of rat cardiac TCs. In addition, rat cardiac TCs secrete a slightly greater number of cytokines, IL‐2, IL‐10, IL‐13 and some chemokines like, GRO‐KC. We found that VEGF, IL‐6 and some chemokines (all stimulated by IL‐6 signalling) are secreted by cardiac TCs and overexpressed in co‐cultures with CSCs. The expression levels of MIP‐2 and MIP‐1α increased twofold and fourfold, respectively, when TCs were co‐cultured with CSCs, while the expression of IL‐2 did not significantly differ between TCs and CSCs in mono culture and significantly decreased (twofold) in the co‐culture system. These data suggest that the TC secretome plays a modulatory role in stem cell proliferation and differentiation.  相似文献   

8.
Telocytes (TCs), a particular interstitial cell type, have been recently described in a wide variety of mammalian organs ( www.telocytes.com ). The TCs are identified morphologically by a small cell body and extremely long (tens to hundreds of μm), thin prolongations (less than 100 nm in diameter, below the resolving power of light microscopy) called telopodes. Here, we demonstrated with electron microscopy and immunofluorescence that TCs were present in human dermis. In particular, TCs were found in the reticular dermis, around blood vessels, in the perifollicular sheath, outside the glassy membrane and surrounding sebaceous glands, arrector pili muscles and both the secretory and excretory portions of eccrine sweat glands. Immunofluorescence screening and laser scanning confocal microscopy showed two subpopulations of dermal TCs; one expressed c‐kit/CD117 and the other was positive for CD34. Both subpopulations were also positive for vimentin. The TCs were connected to each other by homocellular junctions, and they formed an interstitial 3D network. We also found TCs adjoined to stem cells in the bulge region of hair follicles. Moreover, TCs established atypical heterocellular junctions with stem cells (clusters of undifferentiated cells). Given the frequency of allergic skin pathologies, we would like to emphasize the finding that close, planar junctions were frequently observed between TCs and mast cells. In conclusion, based on TC distribution and intercellular connections, our results suggested that TCs might be involved in skin homeostasis, skin remodelling, skin regeneration and skin repair.  相似文献   

9.
Telocytes (TCs), a novel type of interstitial cells, were recently described in the interstitial space of tissues ( www.telocytes.com ). Telocytes TCs have several very long, moniliform extensions, namely telopodes (Tps). However, the functional role(s) of TCs is not yet understood. Successive photomicrographs of ultrathin sections were concatenated to capture the entire length of Tps which usually measure tens to hundreds of micrometres. Besides the podoms (dilations) and podomers (thin segments), ultrastructural features of Tps include the dichotomous branching and establishing homo‐ and heterocellular contacts. Telopodes make a labyrinthine system by 3D convolution and overlapping, their number being roughly estimated at approximately 20 per 1000 μm2. Moreover, the presence of extracellular vesicles (shedding vesicles/exosomes) along the Tps suggests an active intercellular signalling (micro‐ and macromolecules), with possible significance in regulating uterine contractility.  相似文献   

10.
The presence of telocytes (TCs) as distinct interstitial cells was previously documented in human dermis. TCs are interstitial cells completely different than dermal fibroblasts. TCs are interconnected in normal dermis in a 3D network and may be involved in skin homeostasis, remodelling, regeneration and repair. The number, distribution and ultrastructure of TCs were recently shown to be affected in systemic scleroderma. Psoriasis is a common inflammatory skin condition (estimated to affect about 0.1–11.8% of population), a keratinization disorder on a genetic background. In psoriasis, the dermis contribution to pathogenesis is frequently eclipsed by remarkable epidermal phenomena. Because of the particular distribution of TCs around blood vessels, we have investigated TCs in the dermis of patients with psoriasis vulgaris using immunohistochemistry (IHC), immunofluorescence (IF), and transmission electron microscopy (TEM). IHC and IF revealed that CD34/PDGFRα‐positive TCs are present in human papillary dermis. More TCs were present in the dermis of uninvolved skin and treated skin than in psoriatic dermis. In uninvolved skin, TEM revealed TCs with typical ultrastructural features being involved in a 3D interstitial network in close vicinity to blood vessels in contact with immunoreactive cells in normal and treated skin. In contrast, the number of TCs was significantly decreased in psoriatic plaque. The remaining TCs demonstrated multiple degenerative features: apoptosis, membrane disintegration, cytoplasm fragmentation and nuclear extrusion. We also found changes in the phenotype of vascular smooth muscle cells in small blood vessels that lost the protective envelope formed by TCs. Therefore, impaired TCs could be a ‘missed’ trigger for the characteristic vascular pathology in psoriasis. Our data explain the mechanism of Auspitz's sign, the most pathognomonic clinical sign of psoriasis vulgaris. This study offers new insights on the cellularity of psoriatic lesions and we suggest that TCs should be considered new cellular targets in forthcoming therapies.  相似文献   

11.
Telocytes (TCs), novel interstitial cells, have been identified in various organs of many mammals. However, information about TCs of lower animals remains rare. Herein, pancreatic TCs of the Chinese giant salamanders (Andrias davidianus) were identified by CD34 immunohistochemistry (IHC) and transmission electron microscopy (TEM). The IHC micrographs revealed CD34+ TCs with long telopodes (Tps) that were located in the interstitium of the pancreas. CD34+ TCs/Tps were frequently observed between exocrine acinar cells and were close to blood vessels. The TEM micrographs also showed the existence of TCs in the interstitium of the pancreas. TCs had distinctive ultrastructural features, such as one to three very long and thin Tps with podoms and podomers, caveolae, dichotomous branching, neighbouring exosomes and vesicles. The Tps and exosomes were found in close proximity to exocrine acinar cells and α cells. It is suggested that TCs may play a role in the regeneration of acinar cells and α cells. In conclusion, our results demonstrated the presence of TCs in the pancreas of the Chinese giant salamander. This finding will assist us in a better understanding of TCs functions in the amphibian pancreas.  相似文献   

12.
Telocytes (TCs) are a unique type of interstitial cells with specific, extremely long prolongations named telopodes (Tps). Our previous study showed that TCs are distinct from fibroblasts (Fbs) and mesenchymal stem cells (MSCs) as concerns gene expression and proteomics. The present study explores patterns of mouse TC‐specific gene profiles on chromosome 1. We investigated the network of main genes and the potential functional correlations. We compared gene expression profiles of mouse pulmonary TCs, MSCs, Fbs, alveolar type II cells (ATII), airway basal cells (ABCs), proximal airway cells (PACs), CD8+ T cells from bronchial lymph nodes (T‐BL) and CD8+ T cells from lungs (T‐LL). The functional and feature networks were identified and compared by bioinformatics tools. Our data showed that on TC chromosome 1, there are about 25% up‐regulated and 70% down‐regulated genes (more than onefold) as compared with the other cells respectively. Capn2, Fhl2 and Qsox1 were over‐expressed in TCs compared to the other cells, indicating that biological functions of TCs are mainly associated with morphogenesis and local tissue homoeostasis. TCs seem to have important roles in the prevention of tissue inflammation and fibrogenesis development in lung inflammatory diseases and as modulators of immune cell response. In conclusion, TCs are distinct from the other cell types.  相似文献   

13.
Telocytes (TCs) were identified as a distinct cellular type of the interstitial tissue and defined as cells with extremely long telopodes (Tps). Our previous data demonstrated patterns of mouse TC‐specific gene profiles on chromosome 1. The present study focuses on the identification of characters and patterns of TC‐specific or TC‐dominated gene expression profiles in chromosome 2 and 3, the network of principle genes and potential functional association. We compared gene expression profiles of pulmonary TCs, mesenchymal stem cells, fibroblasts, alveolar type II cells, airway basal cells, proximal airway cells, CD8+T cells from bronchial lymph nodes (T‐BL), and CD8+ T cells from lungs (T‐LL). We identified that 26 or 80 genes of TCs in chromosome 2 and 13 or 59 genes of TCs up‐ or down‐regulated in chromosome 3, as compared with other cells respectively. Obvious overexpression of Myl9 in chromosome 2 of TCs different from other cells, indicates that biological functions of TCs are mainly associated with tissue/organ injury and ageing, while down‐expression of Pltp implies that TCs may be associated with inhibition or reduction of inflammation in the lung. Dominant overexpression of Sh3glb1, Tm4sf1 or Csf1 in chromosome 3 of TCs is mainly associated with tumour promotion in lung cancer, while most down‐expression of Pde5 may be involved in the development of pulmonary fibrosis and other acute and chronic interstitial lung disease.  相似文献   

14.
Telocytes (TCs) are novel interstitial cells that have been found in various organs, but the existence of TCs in the testes has not yet been reported. The present ultrastructural and immunohistochemical study revealed the existence of TCs and differentiate these cells from the peritubular cells (Pc) in contact with the surrounding structures in the testes. Firstly, our results confirmed the existence of two cell types surrounding seminiferous tubules; these were Pc (smooth muscle like characteristics) and TCs (as an outer layer around Pc). Telocytes and their long thin prolongations called telopodes (Tps) were detected as alternations of thin segments (podomers) and thick bead‐like portions (podoms), the latter of which accommodate the mitochondria and vesicles. The spindle and irregularly shaped cell bodies were observed with small amounts of cytoplasm around them. In contrast, the processes of Pc contained abundant actin filaments with focal densities, irregular spine‐like outgrowths and nuclei that exhibited irregularities similar to those of smooth muscle cells. The TCs connected with each other via homocellular and heterocellular junctions with Pc, Leydig cells and blood vessels. The Tps of the vascular TCs had bands and shed more vesicles than the other TCs. Immunohistochemistry (CD34) revealed strong positive expression within the TC cell bodies and Tps. Our data confirmed the existence and the contact of TCs with their surroundings in the testes of the Chinese soft‐shelled turtle Pelodiscus sinensis, which may offer new insights for understanding the function of the testes and preventing and treating testicular disorders.  相似文献   

15.
Telocytes (TCs) are new cellular entities of mesenchymal origin described almost ubiquitously in human and mammalian organs ( www.telocytes.com ). Different subtypes of TCs were described, all forming networks in the interstitial space by homo‐ and heterocellular junctions. Previous studies analysed the gene expression profiles of chromosomes 1, 2, 3, 17 and 18 of murine pulmonary TCs. In this study, we analysed by bioinformatics tools the gene expression profiles of chromosome 4 for murine pulmonary TCs and compared it with mesenchymal stem cells (MSCs), fibroblasts (Fbs), alveolar type II cells (ATII), airway basal cells, proximal airway cells, CD8(+) T cells from bronchial lymph nodes (T‐BL) and CD8(+) T cells from lungs (T‐L). Key functional genes were identified with the aid of the reference library of the National Center for Biotechnology Information Gene Expression Omnibus database. Seventeen genes were up‐regulated and 56 genes were down‐regulated in chromosome 4 of TCs compared with other cells. Four genes (Akap2, Gpr153, Sdc3 and Tbc1d2) were up‐regulated between one and fourfold and one gene, Svep1, was overexpressed over fourfold. The main functional networks were identified and analysed, pointing out to a TCs involvement in cellular signalling, regulation of tissue inflammation and cell expansion and movement.  相似文献   

16.
Telocytes (TCs) are a distinct type of interstitial cells characterized by a small cell body and extremely long and thin telopodes (Tps). The presence of TCs has been documented in many tissues and organs (go to http://www.telocytes.com ). Functionally, TCs form a three‐dimensional (3D) interstitial network by homocellular and heterocellular communication and are involved in the maintenance of tissue homeostasis. As important interstitial cells to guide or nurse putative stem and progenitor cells in stem cell niches in a spectrum of tissues and organs, TCs contribute to tissue repair and regeneration. This review focuses on the latest progresses regarding TCs in the repair and regeneration of different tissues and organs, including heart, lung, skeletal muscle, skin, meninges and choroid plexus, eye, liver, uterus and urinary system. By targeting TCs alone or in tandem with stem cells, we might promote regeneration and prevent the evolution to irreversible tissue damage. Exploring pharmacological or non‐pharmacological methods to enhance the growth of TCs would be a novel therapeutic strategy besides exogenous transplantation for many diseased disorders.  相似文献   

17.
Telocytes (TCs) are a novel type of interstitial cell of whom presence has been recently documented in many tissues and organs. However, whether TCs exists in bone marrow is still not reported. This study aims to find out TCs in mice bone marrow by using scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM images showed that in mice bone marrow most of TCs have small spherical cell body (usually 4–6 μm diameter) with thin long telopodes (Tps; usually one to three). The longest Tp observed was about 70 μm, with an uneven calibre. Direct intercellular contacts exist between TCs. TEM shows mitochondria within dilations of Tps. Also, by TEM, we show the close spatial relations of Tps with blood vessels. In conclusion, this study provides ultrastructural evidence regarding the existence of TCs in mice bone marrow, in situ.  相似文献   

18.
We studied the phagocytic‐like capacity of human CD34+ stromal cells/telocytes (TCs). For this, we examined segments of the colon after injection of India ink to help surgeons localize lesions identified at endoscopy. Our results demonstrate that CD34+ TCs have endocytic properties (phagocytic‐like TCs: phTCs), with the capacity to uptake and store India ink particles. phTCs conserve the characteristics of TCs (long, thin, bipolar or multipolar, moniliform cytoplasmic processes/telopodes, with linear distribution of the pigment) and maintain their typical distribution. Likewise, they are easily distinguished from pigment‐loaded macrophages (CD68+ macrophages, with oval morphology and coarse granules of pigment clustered in their cytoplasm). A few c‐kit/CD117+ interstitial cells of Cajal also incorporate pigment and may conserve the phagocytic‐like property of their probable TC precursors. CD34+ stromal cells in other locations (skin and periodontal tissues) also have the phagocytic‐like capacity to uptake and store pigments (hemosiderin, some components of dental amalgam and melanin). This suggests a function of TCs in general, which may be related to the transfer of macromolecules in these cells. Our ultrastructural observation of melanin‐storing stromal cells with characteristics of TCs (telopodes with dichotomous branching pattern) favours this possibility. In conclusion, intestinal TCs have a phagocytic‐like property, a function that may be generalized to TCs in other locations. This function (the ability to internalize small particles), together with the capacity of these cells to release extracellular vesicles with macromolecules, could close the cellular bidirectional cooperative circle of informative exchange and intercellular interactions.  相似文献   

19.
Acute salpingitis (AS) is an inflammatory disease which causes severe damage to a subset of classically described cells lining in oviduct wall and contributes to interstitial fibrosis and fertility problems. Telocytes (TCs), a newly discovered peculiar type of stromal cells, have been identified in many organs, including oviduct, with proposed multiple potential bio‐functions. However, with recent increasing reports regarding TCs alterations in disease‐affected tissues, there is still lack of evidence about TCs involvement in AS‐affected oviduct tissues and potential pathophysiological roles. We presently identified normal TCs by their characteristic ultrastructural features and immunophenotype. However, in AS‐affected oviduct tissues, TCs displayed multiple ultrastructural damage both in cellular body and prolongations, with obvious loss of TCs and development of tissue fibrosis. Furthermore, TCs lose their interstitial 3‐D network connected by homocellular or heterocellular junctions between TCs and adjacent cells. And especially, TCs connected to the activated immunocytes (mononuclear cells, eosinophils) and affected local immune state (repression or activation). Meanwhile, massive neutrophils infiltration and overproduced Inducible Nitric Oxide Synthase (iNOS), COX‐2, suggested mechanism of inflammatory‐induced TCs damage. Consequently, TCs damage might contribute to AS‐induced structural and reproductive functional abnormalities of oviduct, probably via: (i) substances, energy and functional insufficiency, presumably, e.g. TC‐specific genetic material profiles, ion channels, cytoskeletal elements, Tps dynamics, etc., (ii) impaired TCs‐mediated multicellular signalling, such as homeostasis/angiogenesis, tissue repair/regeneration, neurotransmission, (iii) derangement of 3‐D network and impaired mechanical support for TCs‐mediated multicellular signals within the stromal compartment, consequently induced interstitial fibrosis, (iv) involvement in local inflammatory process/ immunoregulation and possibly immune‐mediated early pregnancy failure.  相似文献   

20.
Telocytes (TCs), a new type of interstitial cells, were identified in many different organs and tissues of mammalians and humans. In this study, we show the presence, in human oesophagus, of cells having the typical features of TCs in lamina propria of the mucosa, as well as in muscular layers. We used transmission electron microscopy (TEM), immunohistochemistry (IHC) and primary cell culture. Human oesophageal TCs present a small cell body with 2–3 very long Telopodes (Tps). Tps consist of an alternation of thin segments (podomers) and thick segments (podoms) and have a labyrinthine spatial arrangement. Tps establish close contacts (‘stromal synapses’) with other neighbouring cells (e.g. lymphocytes, macrophages). The ELISA testing of the supernatant of primary culture of TCs indicated that the concentrations of VEGF and EGF increased progressively. In conclusion, our study shows the existence of typical TCs at the level of oesophagus (mucosa, submucosa and muscular layer) and suggests their possible role in tissue repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号