首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
E7, a single domain Family 33 cellulose binding module (CBM) protein, and E8, a non-catalytic, three-domain protein consisting of a Family 33 CBM, a FNIII domain, followed by a Family 2 CBM, were cloned, expressed, purified, and characterized. Western blots showed that E7 and E8 were induced and secreted when Thermobifida fusca was grown on cellobiose, Solka floc, switchgrass, or alfalfa as well as on beta-1,3 linked glucose molecules such as laminaribiose or pachyman. E8 bound well to alpha- and beta-chitin and bacterial microcrystalline cellulose (BMCC) at all pHs tested. E7 bound strongly to beta-chitin, less well to alpha-chitin and more weakly to BMCC than E8. Filter paper binding assays showed that E7 was 28% bound, E8 was 39% bound, a purified CBM2 binding domain from Cel6B was 88% bound, and only 5% of the Cel5A catalytic domain was bound. A C-terminal 6xHis tag influenced binding of both E7 and E8 to these substrates. Filter paper activity assays showed enhanced activity of T. fusca cellulases when E7 or E8 was present. This effect was observed at very low concentrations of cellulases or at very long times into the reaction and was mainly independent of the type of cellulase and the number of cellulases in the mixture. E8, and to a lesser extent E7, significantly enhanced the activity of Serratia marscescens Chitinase C on beta-chitin.  相似文献   

2.
Self‐incompatibility (SI) is a self/non‐self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S‐locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S‐locus encodes a single S‐RNase and a cluster of S‐locus F‐box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of ‘like charges repel and unlike charges attract’ between SLFs and S‐RNases in Petunia hybrida. Strikingly, the alteration of a single C‐terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S‐RNases, providing a mechanistic insight into the self/non‐self discrimination between cytosolic proteins in angiosperms.  相似文献   

3.
Two new compounds, fuscaxanthones J ( 1 ) and K ( 2 ), together with eight known xanthones ( 3 – 10 ) were isolated from an ethyl acetate extract of the roots of Garcinia fusca. Their structures were determined using spectroscopic methods, mainly 1D‐ and 2D‐NMR. α‐Glucosidase inhibitory activity of the isolated compounds was evaluated and fuscaxanthone J ( 1 ) showed the most significant effect with an IC50 value of 8.3 ± 1.8 μm (compared with acarbose, IC50 = 214.5 ± 2.3 μm ).  相似文献   

4.
A full‐length cDNA of a sigma‐like glutathione S‐transferase (GST) was identified from Hyriopsis cumingii (HcGSTS). The deduced amino acid sequence of HcGSTS was found to comprise 203 amino acid residues and to contain the distinct highly conserved glutathione binding site of N‐terminal and the relatively diverse substrate binding site of C‐terminal. Alignment analysis and phylogenetic relationship suggested that the HcGSTS is a sigma‐class GST. The mRNA of HcGSTS was constitutively expressed in all tested tissues, the strongest expression being in the hepatopancreas. The mRNA expression of HcGSTS was significantly up‐regulated (P < 0.05) in all assessed tissues after stimulation of the mussels with peptidoglycan (PGN) and LPS, the only exception being when the gills were challenged with PGN. The expression of HcGSTS mRNA in kidney and foot was also significantly up‐regulated (P < 0.05) by microcystin‐LR. Recombinant HcGSTS exhibited high activity towards the substrate 1‐chloro‐2,4‐dinitrobenzene. The optimal pH was 8.0 and temperature 35 °C.  相似文献   

5.
6.
Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self‐incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related to SI in the Solanaceae. For example, the pistil SI proteins S‐RNase and HT protein function in a pistil‐side IRB that causes rejection of pollen from self‐compatible (SC) red/orange‐fruited species in the tomato clade. However, S‐RNase‐independent IRBs also clearly contribute to rejecting pollen from these species. We investigated S‐RNase‐independent rejection of Solanum lycopersicum pollen by SC Solanum pennellii LA0716, SC. Solanum habrochaites LA0407, and SC Solanum arcanum LA2157, which lack functional S‐RNase expression. We found that all three accessions express HT proteins, which previously had been known to function only in conjunction with S‐RNase, and then used RNAi to test whether they also function in S‐RNase‐independent pollen rejection. Suppressing HT expression in SC S. pennellii LA0716 allows S. lycopersicum pollen tubes to penetrate farther into the pistil in HT suppressed plants, but not to reach the ovary. In contrast, suppressing HT expression in SC. Solanum habrochaites LA0407 and in SC S. arcanum LA2157 allows S. lycopersicum pollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus, HT proteins are implicated in both S‐RNase‐dependent and S‐RNase‐independent pollen rejection. The results support the view that overall compatibility results from multiple pollen–pistil interactions with additive effects.  相似文献   

7.
Protein S‐acylation, also known as palmitoylation, consists of the addition of a lipid molecule to one or more cysteine residues through a thioester bond. This modification, which is widespread in eukaryotes, is thought to affect over 12% of the human proteome. S‐acylation allows the reversible association of peripheral proteins with membranes or, in the case of integral membrane proteins, modulates their behavior within the plane of the membrane. This review focuses on the consequences of protein S‐acylation on intracellular trafficking and membrane association. We summarize relevant information that illustrates how lipid modification of proteins plays an important role in dictating precise intracellular movements within cells by regulating membrane‐cytosol exchange, through membrane microdomain segregation, or by modifying the flux of the proteins by means of vesicular or diffusional transport systems. Finally, we highlight some of the key open questions and major challenges in the field.   相似文献   

8.
Tannerella forsythia is among the most potent triggers of periodontal diseases, and approaches to understand underlying mechanisms are currently intensively pursued. A ~22‐nm‐thick, 2D crystalline surface (S‐) layer that completely covers Tannerella forsythia cells is crucially involved in the bacterium–host cross‐talk. The S‐layer is composed of two intercalating glycoproteins (TfsA‐GP, TfsB‐GP) that are aligned into a periodic lattice. To characterize this unique S‐layer structure at the nanometer scale directly on intact T. forsythia cells, three complementary methods, i.e., small‐angle X‐ray scattering (SAXS), atomic force microscopy (AFM), and single‐molecular force spectroscopy (SMFS), were applied. SAXS served as a difference method using signals from wild‐type and S‐layer‐deficient cells for data evaluation, revealing two possible models for the assembly of the glycoproteins. Direct high‐resolution imaging of the outer surface of T. forsythia wild‐type cells by AFM revealed a p4 structure with a lattice constant of ~9.0 nm. In contrast, on mutant cells, no periodic lattice could be visualized. Additionally, SMFS was used to probe specific interaction forces between an anti‐TfsA antibody coupled to the AFM tip and the S‐layer as present on T. forsythia wild‐type and mutant cells, displaying TfsA‐GP alone. Unbinding forces between the antibody and wild‐type cells were greater than with mutant cells. This indicated that the TfsA‐GP is not so strongly attached to the mutant cell surface when the co‐assembling TfsB‐GP is missing. Altogether, the data gained from SAXS, AFM, and SMFS confirm the current model of the S‐layer architecture with two intercalating S‐layer glycoproteins and TfsA‐GP being mainly outwardly oriented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Many plants have a self‐incompatibility (SI) system in which the rejection of self‐pollen is determined by multiple haplotypes at a single locus, termed S. In the Solanaceae, each haplotype encodes a single ribonuclease (S‐RNase) and multiple S‐locus F‐box proteins (SLFs), which function as the pistil and pollen SI determinants, respectively. S‐RNase is cytotoxic to self‐pollen, whereas SLFs are thought to collaboratively recognize non‐self S‐RNases in cross‐pollen and detoxify them via the ubiquitination pathway. However, the actual mechanism of detoxification remains unknown. Here we isolate the components of a SCFSLF (SCF = SKP1‐CUL1‐F‐box‐RBX1) from Petunia pollen. The SCFSLF polyubiquitinates a subset of non‐self S‐RNases in vitro. The polyubiquitinated S‐RNases are degraded in the pollen extract, which is attenuated by a proteasome inhibitor. Our findings suggest that multiple SCFSLF complexes in cross‐pollen polyubiquitinate non‐self S‐RNases, resulting in their degradation by the proteasome.  相似文献   

10.
Many flowering plants show self‐incompatibility, an intra‐specific reproductive barrier by which pistils reject self‐pollen to prevent inbreeding and accept non‐self pollen to promote out‐crossing. In Petunia, the polymorphic S–locus determines self/non‐self recognition. The locus contains a gene encoding an S–RNase, which controls pistil specificity, and multiple S‐locus F‐box (SLF) genes that collectively control pollen specificity. Each SLF is a component of an SCF (Skp1/Cullin/F‐box) complex that is responsible for mediating degradation of non‐self S‐RNase(s), with which the SLF interacts, via the ubiquitin–26S proteasome pathway. A complete set of SLFs is required to detoxify all non‐self S‐RNases to allow cross‐compatible pollination. Here, we show that SLF1 of Petunia inflata is itself subject to degradation via the ubiquitin–26S proteasome pathway, and identify an 18 amino acid sequence in the C‐terminal region of S2‐SLF1 (SLF1 of S2 haplotype) that contains a degradation motif. Seven of the 18 amino acids are conserved among all 17 SLF proteins of S2 haplotype and S3 haplotype involved in pollen specificity, suggesting that all SLF proteins are probably subject to similar degradation. Deleting the 18 amino acid sequence from S2‐SLF1 stabilized the protein but abolished its function in self‐incompatibility, suggesting that dynamic cycling of SLF proteins is an integral part of their function in self‐incompatibility.  相似文献   

11.
Trehalose is a disaccharide with two glucose mole-cules linked in an α,α-1,1-glycosidic linkage. The onlyreducing group in each of its glucose molecules has beenused up for the formation of α,α-1,1-glycosidic linkage,therefore trehalose is a nonreducing disaccharide withhigh stability against the disruption caused by such factorsas temperature and extreme pH of environment [1]. Ithas been well established that many organisms will copewith external stress conditions by increasing the levelo…  相似文献   

12.
Polar growth of root hairs is critical for plant survival and requires fine‐tuned Rho of plants (ROP) signaling. Multiple ROP regulators participate in root hair growth. However, protein S‐acyl transferases (PATs), mediating the S‐acylation and membrane partitioning of ROPs, are yet to be found. Using a reverse genetic approach, combining fluorescence probes, pharmacological drugs, site‐directed mutagenesis and genetic analysis with related root‐hair mutants, we have identified and characterized an Arabidopsis PAT, which may be responsible for ROP2 S‐acylation in root hairs. Specifically, functional loss of PAT4 resulted in reduced root hair elongation, which was rescued by a wild‐type but not an enzyme‐inactive PAT4. Membrane‐associated ROP2 was significantly reduced in pat4, similar to S‐acylation‐deficient ROP2 in the wild type. We further showed that PAT4 and SCN1, a ROP regulator, additively mediate the stability and targeting of ROP2. The results presented here indicate that PAT4‐mediated S‐acylation mediates the membrane association of ROP2 at the root hair apex and provide novel insights into dynamic ROP signaling during plant tip growth.  相似文献   

13.
14.
Elemental sulfur exists primarily as an ring and serves as terminal electron acceptor for a variety of sulfur‐fermenting bacteria. Hyperthermophilic archaea from black smoker vents are an exciting research tool to advance our knowledge of sulfur respiration under extreme conditions. Here, we use a hybrid method approach to demonstrate that the proteinaceous cavities of the S‐layer nanotube of the hyperthermophilic archaeon Staphylothermus marinus act as a storage reservoir for cyclo‐octasulfur . Fully atomistic molecular dynamics (MD) simulations were performed and the method of multiconfigurational thermodynamic integration was employed to compute the absolute free energy for transferring a ring of elemental sulfur from an aqueous bath into the largest hydrophobic cavity of a fragment of archaeal tetrabrachion. Comparisons with earlier MD studies of the free energy of hydration as a function of water occupancy in the same cavity of archaeal tetrabrachion show that the sulfur ring is energetically favored over water.  相似文献   

15.
16.
Epidemiological studies corroborate a correlation between pesticide use and Parkinson's disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S‐ethyl N,N‐dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S‐methyl‐N,N‐diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. In addition, worms treated with the three test compounds showed a drastic loss of DAergic‐dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD.  相似文献   

17.
S‐Acylation is a reversible post‐translational lipid modification in which a long chain fatty acid covalently attaches to specific cysteine(s) of proteins via a thioester bond. It enhances the hydrophobicity of proteins, contributes to their membrane association and plays roles in protein trafficking, stability and signalling. A family of P rotein S‐A cyl T ransferases (PATs) is responsible for this reaction. PATs are multi‐pass transmembrane proteins that possess a catalytic Asp?His?His?Cys cysteine‐rich domain (DHHC‐CRD). In Arabidopsis, there are currently 24 such PATs, five having been characterized, revealing their important roles in growth, development, senescence and stress responses. Here, we report the functional characterization of another PAT, AtPAT21, demonstrating the roles it plays in Arabidopsis sexual reproduction. Loss‐of‐function mutation by T‐DNA insertion in AtPAT21 results in the complete failure of seed production. Detailed studies revealed that the sterility of the mutant is caused by defects in both male and female sporogenesis and gametogenesis. To determine if the sterility observed in atpat21‐1 was caused by upstream defects in meiosis, we assessed meiotic progression in pollen mother cells and found massive chromosome fragmentation and the absence of synapsis in the initial stages of meiosis. Interestingly, the fragmentation phenotype was substantially reduced in atpat21‐1 spo11‐1 double mutants, indicating that AtPAT21 is required for repair, but not for the formation, of SPO11‐induced meiotic DNA double‐stranded breaks (DSBs) in Arabidopsis. Our data highlight the importance of protein S‐acylation in the early meiotic stages that lead to the development of male and female sporophytic reproductive structures and associated gametophytes in Arabidopsis.  相似文献   

18.
19.
20.
Self‐assembling surface layer (SL) proteins of bacteria have been widely studied, in particular their use as molecularly defined, 2D coatings of technical surfaces. An important prerequisite is the availability of a sufficient amount of protein. However, a detailed and optimized protocol for the complete SL extraction is so far not available. Here, we describe the complete purification and reassembly procedure of an SL protein of Lysinibacillus sphaericus NCTC 9602, starting from the cultivation of cells, the preparation and purification of SL proteins up to the long‐term storage and in vitro self‐assembly of the proteins. All crucial steps of the procedure are assessed by different microscopic techniques, such as light microscopy, atomic force microscopy, and scanning electron microscopy as well as by SDS‐PAGE as a biochemical method. We demonstrate that storage of the protein in the presence of sodium azide or upon lyophilization allows the preservation of the self‐assembly properties for at least 9 years. Additionally, we describe a method allowing the extraction of intact flagella with lengths in the range up to 4 μm. Flagella may have applications in bio‐nanotechnology, for example as templates for metallic nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号