首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To assess the roles of dispersal and vicariance in shaping the present distribution and diversity within Hypentelium nigricans, the northern hogsucker (Teleostei: Cypriniformes). Location Eastern United States. Methods Parsimony analyses, Bayesian analyses, pairwise genetic divergence and mismatch plots are used to examine patterns of genetic variation across H. nigricans. Results Species relationships within the genus Hypentelium were consistent with previous hypotheses. However, relationships between haplotypes within H. nigricans revealed two deeply divergent groups, a clade containing haplotypes from the New and Roanoke rivers (Atlantic Slope) plus Interior Highlands and upper Mississippi River and a clade containing haplotypes from the Eastern Highlands, previously glaciated regions of the Ohio and Wabash rivers, and the Amite and Homochitto rivers of south‐western Mississippi. Main conclusions The phylogenetic history of Hypentelium was shaped by old vicariant events associated with erosion of the Blue Ridge and separation of the Mobile and Mississippi river basins. Within H. nigricans two clades existed prior to the Pleistocene; a widespread clade in the pre‐glacial Teays‐Mississippi River system and a clade in Cumberland and Tennessee rivers. Pleistocene events fragmented the Teays‐Mississippi fauna. Following the retreat of the glaciers H. nigricans dispersed northward into previously glaciated regions. These patterns are replicated in other clades of fishes and are consistent with some of the predictions of Mayden's (Systematic Zoology, 37, 329, 1988) pre‐Pleistocene vicariance hypothesis.  相似文献   

2.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

3.
Aim Glacial refugia during the Pleistocene had major impacts on the levels and spatial apportionment of genetic diversity of species in northern latitude ecosystems. We characterized patterns of population subdivision, and tested hypotheses associated with locations of potential Pleistocene refugia and the relative contribution of these refugia to the post‐glacial colonization of North America and Scandinavia by common eiders (Somateria mollissima). Specifically, we evaluated localities hypothesized as ice‐free areas or glacial refugia for other Arctic vertebrates, including Beringia, the High Arctic Canadian Archipelago, Newfoundland Bank, Spitsbergen Bank and north‐west Norway. Location Alaska, Canada, Norway and Sweden. Methods Molecular data from 12 microsatellite loci, the mitochondrial DNA (mtDNA) control region, and two nuclear introns were collected and analysed for 15 populations of common eiders (n = 716) breeding throughout North America and Scandinavia. Population genetic structure, historical population fluctuations and gene flow were inferred using F‐statistics, analyses of molecular variance, and multilocus coalescent analyses. Results Significant inter‐population variation in allelic and haplotypic frequencies were observed (nuclear DNA FST = 0.004–0.290; mtDNA ΦST = 0.051–0.927). Whereas spatial differentiation in nuclear genes was concordant with subspecific designations, geographic proximity was more predictive of inter‐population variance in mitochondrial DNA haplotype frequency. Inferences of historical population demography were consistent with restriction of common eiders to four geographic areas during the Last Glacial Maximum: Belcher Islands, Newfoundland Bank, northern Alaska and Svalbard. Three of these areas coincide with previously identified glacial refugia: Newfoundland Bank, Beringia and Spitsbergen Bank. Gene‐flow and clustering analyses indicated that the Beringian refugium contributed little to common eider post‐glacial colonization of North America, whereas Canadian, Scandinavian and southern Alaskan post‐glacial colonization is likely to have occurred in a stepwise fashion from the same glacial refugium. Main conclusions Concordance of proposed glacial refugia used by common eiders and other Arctic species indicates that Arctic and subarctic refugia were important reservoirs of genetic diversity during the Pleistocene. Furthermore, suture zones identified at MacKenzie River, western Alaska/Aleutians and Scandinavia coincide with those identified for other Arctic vertebrates, suggesting that these regions were strong geographic barriers limiting dispersal from Pleistocene refugia.  相似文献   

4.
Phylogeographic patterns of many taxa are explained by Pleistocene glaciation. The temperate rainforests within the Pacific Northwest of North America provide an excellent example of this phenomenon, and competing phylogenetic hypotheses exist regarding the number of Pleistocene refugia influencing genetic variation of endemic organisms. One such endemic is the Pacific giant salamander, Dicamptodon tenebrosus. In this study, we estimate this species' phylogeny and use a coalescent modeling approach to test five hypotheses concerning the number, location and divergence times of purported Pleistocene refugia. Single refugium hypotheses include: a northern refugium in the Columbia River Valley and a southern refugium in the Klamath-Siskiyou Mountains. Dual refugia hypotheses include these same refugia but separated at varying times: last glacial maximum (20,000 years ago), mid-Pleistocene (800,000 years ago) and early Pleistocene (1.7 million years ago). Phylogenetic analyses and inferences from nested clade analysis reveal distinct northern and southern lineages expanding from the Columbia River Valley and the Klamath-Siskiyou Mountains, respectively. Results of coalescent simulations reject both single refugium hypotheses and the hypothesis of dual refugia with a separation date in the late Pleistocene but not hypotheses predicting dual refugia with separation in early or mid-Pleistocene. Estimates of time since divergence between northern and southern lineages also indicate separation since early to mid-Pleistocene. Tests for expanding populations using mismatch distributions and 'g' distributions reveal demographic growth in the northern and southern lineages. The combination of these results provides strong evidence that this species was restricted into, and subsequently expanded from, at least two Pleistocene refugia in the Pacific Northwest.  相似文献   

5.
Aim To investigate the degree of phylogeographical divergence within pygmy whitefish (Prosopium coulterii) and to test hypotheses concerning the origin of disjunct populations within North America. Location North America from western Alaska to Lake Superior. Methods Mitochondrial (ATPase subunit VI) and nuclear (ITS‐1, ITS‐2) DNA sequence variation was assessed across the species’ North American range to test for the existence of distinct phylogeographical groupings of pygmy whitefish associated with known glacial refugia. Coalescent simulations of the mitochondrial DNA (mtDNA) data were used to test hypotheses of population structure. Results This species is composed of two monophyletic mitochondrial clades across its North American range. The two mtDNA clades differed by an average 3.3% nucleotide sequence divergence. These clades were also distinguished by ITS‐2, but the relationships among lineages were not resolved by the ITS‐1 analysis. Coalescent analyses rejected the null hypothesis of the current disjunct distributions being a result of fragmentation of a single widespread ancestral lineage across a variety of effective population sizes and divergence times. Main conclusions The current range disjunctions of pygmy whitefish in North America probably resulted from isolation, genetic divergence, and selective dispersal from at least two major Pleistocene glacial refugia: Beringia and Cascadia. More recent isolation and dispersal from an upper Mississippi refugium is suggested by relationships within one of the clades and by distributional evidence from co‐distributed species. The Beringian and Cascadian refugia have played major roles in the zoogeography of Nearctic temperate aquatics, but the roles of smaller refugia appear more variable among other species.  相似文献   

6.
The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia—the Mississippi, Bering, and Atlantic refugia—not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia.  相似文献   

7.
Montane species endemic to the “sky islands” of the North American southwest were significantly impacted by changing climates during the Pleistocene. We combined mitochondrial and genomic data with species distribution modelling to determine whether Aphonopelma marxi, a large tarantula from the nearby Colorado Plateau, was similarly impacted by glacial climates. Genetic analyses revealed that the species comprises three main clades that diverged in the Pleistocene. A clade distributed along the Mogollon Rim appears to have persisted in place during glacial conditions, whereas the other two clades probably colonized central and northeastern portions of the species' range from refugia in canyons. Climate models support this hypothesis for the Mogollon Rim, but late glacial climate data appear too coarse to detect suitable areas in canyons. Locations of canyon refugia could not be inferred from genomic analyses due to missing data, encouraging us to explore the effect of missing loci in phylogeographical inferences using RADseq. Results from analyses with varying amounts of missing data suggest that samples with large amounts of missing data can still improve inferences, and the specific loci that are missing matters more than the number of missing loci. This study highlights the profound impact of Pleistocene climates on tarantulas endemic to the Colorado Plateau, as well as the mixed nature of the region's fauna. Some animals recently colonized from nearby deserts as glacial climates receded, whereas others, like tarantulas, appear to have persisted on the Mogollon Rim and in refugia associated with the region's famous river‐cut canyons.  相似文献   

8.
The uplift of the Tibetan Plateau caused significant ecogeographical changes that had a major impact on the exchange and isolation of regional fauna and flora. Furthermore, Pleistocene glacial oscillations were linked to temporal large‐scale landmass and drainage system reconfigurations near the Hengduan Mountain Region and might have facilitated speciation and promoted biodiversity in southwestern China. However, strong biotic evidence supporting this role is lacking. Here, we use the Euchiloglanis fish species complex as a model to demonstrate the compound effects of the Tibetan Plateau uplift and Pleistocene glacial oscillations on species formation in this region. The genetic structure and geographical differentiation of the Euchiloglanis complex in four river systems within the Hengduan Mountain Region were deduced using the cytochrome b (cyt b) gene and 10 microsatellite loci from 360 to 192 individuals, respectively. The results indicated that the populations were divided into four independently evolving lineages, in which the populations from the Qingyi River and Jinsha River formed two sub‐lineages. Phylogenetic relationships were structured by geographical isolation, especially near drainage systems. Divergence time estimation analyses showed that the Euchiloglanis complex diverged from its sister clade Pareuchiloglanis sinensis at around 1.3 Million years ago (Ma). Within the Euchiloglanis complex, the divergence time between the Dadu–Yalong and Jinsha–Qingyi River populations occurred at 1.0 Ma. This divergence time was in concordance with recent geological events, including the Kun‐Huang Movement (1.2–0.6 Ma) and the lag time (<2.0 Ma) of river incision in the Hengduan Mountain Region. Population expansion signals were detected from mismatched distribution analyses, and the expansion times were concurrent with Pleistocene glacier fluctuations. Therefore, current phylogeographic patterns of the Euchiloglanis fish complex in the Hengduan Mountain Region were influenced by the uplift event of the Tibetan Plateau and were subsequently altered by paleo‐river transitions during the late Pleistocene glacial oscillations.  相似文献   

9.
Climatic oscillations during the Pleistocene epoch had a dramatic impact on the distribution of biota in the northern hemisphere. In order to trace glacial refugia and postglacial colonization routes on a global scale, we studied mitochondrial DNA sequence variation in a freshwater fish (burbot, Lota lota; Teleostei, Gadidae) with a circumpolar distribution. The subdivision of burbot in the subspecies Lota lota lota (Eurasia and Alaska) and Lota lota maculosa (North America, south of the Great Slave Lake) was reflected in two distinct mitochondrial lineages (average genetic distance is 2.08%). The lota form was characterized by 30 closely related haplotypes and a large part of its range (from Central Europe to Beringia) was characterized by two widespread ancestral haplotypes, implying that transcontinental exchange/migration was possible for cold-adapted freshwater taxa in recent evolutionary time. However, the derived mitochondrial variants observed in peripheral populations point to a recent separation from the core group and postglacial recolonization from distinct refugia. Beringia served as refuge from where L. l. lota dispersed southward into North America after the last glacial maximum. Genetic variation in the maculosa form consisted of three mitochondrial clades, which were linked to at least three southern refugia in North America. Two mitochondrial clades east of the Continental Divide (Mississippian and Missourian clades) had a distinct geographical distribution in the southern refuge zones but intergraded in the previously glaciated area. The third clade (Pacific) was exclusively found west of the Continental Divide.  相似文献   

10.
The northern Dolly Varden, Salvelinus malma malma, is a typical representative of arctic fauna distributed in northeastern Asia and northwestern North America. Because its spawning habitats were affected by Pleistocene glacial advances over most of its natural range, S. m. malma is among the most interesting objects of phylogeographic and microevolutionary studies. We reconstructed the genealogy of mtDNA haplotypes from 27 Alaskan and Asian populations to study the influence of glacial and geological vicariance events on the contemporary population genetic structure, phylogeographic subdivision and distribution of the northern Dolly Varden. Analysis of restriction site states in three PCR‐amplified mtDNA regions (ND1/ND2, ND5/ND6, Cytb/D‐loop; 47% of the mitochondrial genome) resolved 75 haplotypes in 436 fish. Similar patterns of subspecific variation apparent from hierarchical diversity and nested clade analyses of mtDNA haplotypes identify weak spatial differentiation and low levels of divergence. Our results suggest that (1) demographic history has been influenced by historical range expansions and recent isolation by distance, (2) present populations from Asia and North America were colonized from one main Beringian Refugium, and (3) that this taxon's ancestral population probably experienced a bottleneck in the Beringian Refugium during the late Pleistocene (Wisconsin) glacial period.  相似文献   

11.
The Pleistocene climatic fluctuations had a huge impact on all life forms, and various hypotheses regarding the survival of organisms during glacial periods have been postulated. In the European Alps, evidence has been found in support of refugia outside the ice shield (massifs de refuge) acting as sources for postglacial recolonization of inner‐Alpine areas. In contrast, evidence for survival on nunataks, ice‐free areas above the glacier, remains scarce. Here, we combine multivariate genetic analyses with ecological niche models (ENMs) through multiple timescales to elucidate the history of Alpine Megabunus harvestmen throughout the ice ages, a genus that comprises eight high‐altitude endemics. ENMs suggest two types of refugia throughout the last glacial maximum, inner‐Alpine survival on nunataks for four species and peripheral refugia for further four species. In some geographic regions, the patterns of genetic variation are consistent with long‐distance dispersal out of massifs de refuge, repeatedly coupled with geographic parthenogenesis. In other regions, long‐term persistence in nunataks may dominate the patterns of genetic divergence. Overall, our results suggest that glacial cycles contributed to allopatric diversification in Alpine Megabunus, both within and at the margins of the ice shield. These findings exemplify the power of ENM projections coupled with genetic analyses to identify hypotheses about the position and the number of glacial refugia and thus to evaluate the role of Pleistocene glaciations in driving species‐specific responses of recolonization or persistence that may have contributed to observed patterns of biodiversity.  相似文献   

12.
Aim Several recent studies have suggested that a substantial portion of today’s plant diversity in the Neotropics has resulted from the dispersal of taxa into that region rather than by vicariance. In general, three routes have been documented for the dispersal of taxa onto the South American continent: (1) via the North Atlantic Land Bridge, (2) via the Bering Land Bridge, or (3) from Africa directly onto the continent. Here a species‐rich genus of Neotropical lowland rain forest trees (Guatteria, Annonaceae) is used as a model to investigate these three hypotheses. Location The Neotropics. Methods The phylogenetic relationships within the long‐branch clade of Annonaceae were reconstructed (using maximum parsimony, maximum likelihood and Bayesian inference) in order to gain insight in the phylogenetic position of Guatteria. Furthermore, Bayesian molecular dating and Bayesian dispersal–vicariance (Bayes‐DIVA) analyses were undertaken. Results Most of the relationships within the long‐branch clade of Annonaceae were reconstructed and had high support. However, the relationship between the Duguetia clade, the XylopiaArtabotrys clade and Guatteria remained unclear. The stem node age estimate of Guatteria ranged between 49.2 and 51.3 Ma, whereas the crown node age estimate ranged between 11.4 and 17.8 Ma. For the ancestral area of Guatteria and its sister group, the area North America–Africa was reconstructed in 99% of 10,000 DIVA analyses, while South America–North America was found just 1% of the time. Main conclusions The estimated stem to crown node ages of Guatteria in combination with the Bayes‐DIVA analyses imply a scenario congruent with an African origin followed by dispersal across the North Atlantic Land Bridge in the early to middle Eocene and further dispersal into North and Central America (and ultimately South America) in the Miocene. The phylogenetically and morphologically isolated position of the genus is probably due to extinction of the North American and European stem lineages in the Tertiary.  相似文献   

13.
Climatic and geological processes associated with glaciation cycles during the Pleistocene have been implicated in influencing patterns of genetic variation and promoting speciation of temperate flora and fauna. However, determining the factors promoting divergence and speciation is often difficult in many groups because of our limited understanding of potential vicariant barriers and connectivity between populations. Pleistocene glacial cycles are thought to have significantly influenced the distribution and diversity of subterranean invertebrates; however, impacts on subterranean aquatic vertebrates are less clear. We employed several hypothesis‐driven approaches to assess the impacts of Pleistocene climatic and geological changes on the Northern Cavefish, Amblyopsis spelaea, whose current distribution occurs near the southern extent of glacial advances in North America. Our results show that the modern Ohio River has been a significant barrier to dispersal and is correlated with patterns of genetic divergence. We infer that populations were isolated in two refugia located north and south of the Ohio River during the most recent two glacial cycles with evidence of demographic expansion in the northern isolate. Finally, we conclude that climatic and geological processes have resulted in the formation of cryptic forms and advocate recognition of two distinct phylogenetic lineages currently recognized as A. spelaea.  相似文献   

14.
Population genetic relationships reveal the signatures of current processes such as reproductive behaviour and migration, as well as historic events including vicariance and climate change. We analyse population structure of native walleye Sander vitreus across North America, encompassing 10 nuclear DNA microsatellite loci, 26 spawning sites and 921 samples from watersheds across the Great Lakes, Lake Winnipeg, upper Mississippi River, Ohio River and Mobile Bay of the Gulf Coast. Geographical patterning is assessed using phylogenetic trees, pairwise F ST analogues, hierarchical partitioning, Mantel regression, Bayesian assignment and Monmonier geographical networks. Results reveal congruent divergences among population groups, corresponding to historic isolation in glacial refugia, dispersal patterns and basin divisions. Broad-scale relationships show genetic isolation with geographical distance, but reproductive groups within basins do not – with some having pronounced differences. Greatest divergence distinguishes outlying Gulf Coastal and northwest populations, the latter tracing to dispersal from the Missourian refugium to former glacial Lake Agassiz, and basin isolation ∼7000 ya. Genetic barriers in the Great Lakes separate groups in Lakes Superior, Huron's Georgian Bay, Erie and Ontario, reflecting contributions from Mississippian and Atlantic refugia, and changes in connectivity patterns. Walleye genetic patterns thus reflect vicariance among watersheds and glacial refugia, followed by re-colonization pathways and changing drainage connections that established modern-day northern populations, whose separations are maintained through spawning site fidelity. Conservation management practices should preserve genetic identity and unique characters among these divergent walleye populations.  相似文献   

15.
Many arctic‐alpine plant genera have undergone speciation during the Quaternary. The bases for these radiations have been ascribed to geographic isolation, abiotic and biotic differences between populations, and/or hybridization and polyploidization. The Cordilleran Campanula L. (Campanulaceae Juss.), a monophyletic clade of mostly endemic arctic‐alpine taxa from western North America, experienced a recent and rapid radiation. We set out to unravel the factors that likely influenced speciation in this group. To do so, we integrated environmental, genetic, and morphological datasets, tested biogeographic hypotheses, and analyzed the potential consequences of the various factors on the evolutionary history of the clade. We created paleodistribution models to identify potential Pleistocene refugia for the clade and estimated niche space for individual taxa using geographic and climatic data. Using 11 nuclear loci, we reconstructed a species tree and tested biogeographic hypotheses derived from the paleodistribution models. Finally, we tested 28 morphological characters, including floral, vegetative, and seed characteristics, for their capacity to differentiate taxa. Our results show that the combined effect of Quaternary climatic variation, isolation among differing environments in the mountains in western North America, and biotic factors influencing floral morphology contributed to speciation in this group during the mid‐Pleistocene. Furthermore, our biogeographic analyses uncovered asynchronous consequences of interglacial and glacial periods for the timing of refugial isolation within the southern and northwestern mountains, respectively. These findings have broad implications for understanding the processes promoting speciation in arctic‐alpine plants and the rise of numerous endemic taxa across the region.  相似文献   

16.
The theory of classical and cryptic Pleistocene refugia is based mainly on historical changes in temperature, and the refugia are usually defined within a latitudinal gradient. However, the gradient of oceanic–continental climate (i.e. longitudinal) was also significantly variable during glacial cycles with important biotic consequences. Range‐wide phylogeography of the European ground squirrel (EGS) was used to interpret the evolutionary and palaeogeographical history of the species in Europe and to shed light on its glacial–interglacial dynamic. The EGS is a steppe‐inhabiting species and the westernmost member of the genus in the Palaearctic region. We have analysed 915 specimens throughout the present natural range by employing mitochondrial DNA sequences (cytochrome b gene) and 12 nuclear microsatellite markers. The reconstructed phylogeography divides the species into two main geographical groups, with deep substructuring within both groups. Bulgaria is the centre of the ancestral area, and it also has the highest genetic diversity within the species. The northernmost group of the EGS survived in the southern part of Pannonia throughout several glacial–interglacial cycles. Animals from this population probably repeatedly colonized areas further to the north and west during the glacial periods, while in the interglacial periods, the EGS distribution contracted back to this Pannonian refugium. The EGS thus represents a species with a glacial expansion/interglacial contraction palaeogeographical dynamics, and the Pannonian and southeastern Balkanian steppes are supported as cryptic refugia of continental climate during Pleistocene interglacials.  相似文献   

17.
K Inoue  E M Monroe  C L Elderkin  D J Berg 《Heredity》2014,112(3):282-290
Freshwater organisms of North America have had their contemporary genetic structure shaped by vicariant events, especially Pleistocene glaciations. Life history traits promoting dispersal and gene flow continue to shape population genetic structure. Cumberlandia monodonta, a widespread but imperiled (IUCN listed as endangered) freshwater mussel, was examined to determine genetic diversity and population genetic structure throughout its range. Mitochondrial DNA sequences and microsatellite loci were used to measure genetic diversity and simulate demographic events during the Pleistocene using approximate Bayesian computation (ABC) to test explicit hypotheses explaining the evolutionary history of current populations. A phylogeny and molecular clock suggested past isolation created two mtDNA lineages during the Pleistocene that are now widespread. Two distinct groups were also detected with microsatellites. ABC simulations indicated the presence of two glacial refugia and post-glacial admixture of them followed by simultaneous dispersal throughout the current range of the species. The Ouachita population is distinct from others and has the lowest genetic diversity, indicating that this is a peripheral population of the species. Gene flow within this species has maintained high levels of genetic diversity in most populations; however, all populations have experienced fragmentation. Extirpation from the center of its range likely has isolated remaining populations due to the geographic distances among them.  相似文献   

18.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   

19.
Spatial and temporal constraints on dispersal explain the absence of species from areas with potentially suitable conditions. Previous studies have shown that post‐glacial recolonization has shaped the current ranges of many species, yet it is not completely clear to what extent interspecific differences in range size depend on different dispersal rates. The inferred boundaries of glacial refugia are difficult to validate, and may bias spatial distribution models (SDMs) that consider post‐glacial dispersal constraints. We predicted the current distribution of 12 Caucasian forest plants and animals, factoring in the effective geographical distance from inferred glacial refugia as an additional predictor. To infer glacial refugia, we tested the transferability of the current SDMs based on the distribution of climatic variables, and projected the most transferable ones onto two climate scenarios simulated for the Last Glacial Maximum (LGM). We then calculated least‐cost distances from the inferred refugia, using elevation as a friction surface, and recalculated the current SDMs incorporating the distances as an additional variable. We compared the predictive powers of the initial with the final SDMs. The palaeoclimatic simulation that best matched the distribution of species was assumed to represent the closest fit to the true palaeoclimate. SDMs incorporating refugial distance performed significantly better for all but one studied species, and the Model for Interdisciplinary Research on Climate (MIROC) climatic simulation provided a more convincing pattern of the LGM climate than the Community Climate System Model (CCSM) simulation. Our results suggest that the projection of suitable habitat models onto past climatic conditions may yield realistic boundaries of glacial refugia, and that the current distribution of forest species in the study region is strongly associated with locations of former refugia. We inferred six major forest refugia throughout western Asia: (1) Colchis; (2) western Anatolia; (3) western Taurus; (4) the upper reaches of the Tigris River; (5) the Levant; and (6) the southern Caspian basin. The boundaries of the modelled refugia were substantially broader than the refugia boundaries inferred solely from pollen records. Thus, our method could be used to: (1) improve models of current species distributions by considering the dispersal histories of the species; and (2) validate alternative reconstructions of palaeoclimate with current distribution data. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 231–248.  相似文献   

20.
In the last few years, improved analytical tools and the integration of genetic data with multiple sources of information have shown that temperate species exhibited more complex responses to ice ages than previously thought. In this study, we investigated how Pleistocene climatic changes affected the current distribution and genetic diversity of European populations of the tick Ixodes ricinus, an ectoparasite with high ecological plasticity. We first used mitochondrial and nuclear genetic markers to investigate the phylogeographic structure of the species and its Pleistocene history using coalescent‐based methods; then we used species distribution modelling to infer the climatic niche of the species at last glacial maximum; finally, we reviewed the literature on the I. ricinus hosts to identify the locations of their glacial refugia. Our results support the scenario that during the last glacial phase, I. ricinus never experienced a prolonged allopatric divergence in separate glacial refugia, but persisted with interconnected populations across Southern and Central Europe. The generalist behaviour in host choice of I. ricinus would have played a major role in maintaining connections between its populations. Although most of the hosts persisted in separate refugia, from the point of view of I. ricinus, they represented a continuity of ‘bridges’ among populations. Our study highlights the importance of species‐specific ecology in affecting responses to Pleistocene glacial–interglacial cycles. Together with other cases in Europe and elsewhere, it contributes to setting new hypotheses on how species with wide ecological plasticity coped with Pleistocene climatic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号