首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell‐based therapy using stem cells has emerged as one of the pro‐angiogenic methods to enhance blood vessel growth and sprouting in ischaemic conditions. This study investigated the endogenous and induced angiogenic characteristics of hCDSC (human chorion‐derived stem cell) using QPCR (quantitative PCR) method, immunocytochemistry and fibrin‐matrigel migration assay. The results showed that cultured hCDSC endogenously expressed angiogenic–endogenic‐associated genes (VEGF, bFGF, PGF, HGF, Ang‐1, PECAM‐1, eNOS, Ve‐cad, CD34, VEGFR‐2 and vWF), with significant increase in mRNA levels of PGF, HGF, Ang‐1, eNOS, VEGFR‐2 and vWF following induction by bFGF (basic fibroblast growth factor) and VEGF (vascular endothelial growth factor). These enhanced angiogenic properties suggest that induced hCDSC provides a stronger angiogenic effect for the treatment of ischaemia. After angiogenic induction, hCDSC showed no reduction in the expression of the stemness genes, but had significantly higher levels of mRNA of Oct‐4, Nanog (3), FZD9, ABCG‐2 and BST‐1. The induced cells were positive for PECAM‐1 (platelet/endothelial cell adhesion molecule 1) and vWF (von Willebrand factor) with immunocytochemistry staining. hCDSC also showed endothelial migration behaviour when cultured in fibrin‐matrigel construct and were capable of forming vessels in vivo after implanting into nude mice. These data suggest that hCDSC could be the cells of choice in the cell‐based therapy for pro‐angiogenic purpose.  相似文献   

2.
Microparticles (MPs) are small membrane‐vesicles that accumulate in the synovial fluids of patients with rheumatoid arthritis (RA). In the arthritic joints, MPs induce a pro‐inflammatory and invasive phenotype in synovial fibroblasts (SFs). The present study investigated whether activation of SFs by MPs stimulates angiogenesis in the inflamed joints of patients with RA. MPs were isolated from Jurkat cells and U937 cells by differential centrifugation. SFs were co‐cultured with increasing numbers of MPs. The effects of supernatants from co‐cultures on endothelial cells were studied in vitro and in vivo using MTT assays, annexin V and propidium iodide staining, trans‐well migration assays and modified matrigel pouch assays. MPs strongly induced the expression of the pro‐angiogenic ELR+ chemokines CXCL1, CXCL2, CXCL3, CXCL5 and CXCL6 in RASFs. Other vascular growth factors were not induced. Supernatants from co‐cultures enhanced the migration of endothelial cells, which could be blocked by neutralizing antibodies against ELR+ chemokines. Consistent with the specific induction of ELR+ chemokines, proliferation and viability of endothelial cells were not affected by the supernatants. In the in vivo bio‐chamber assay, supernatants from RASFs co‐cultured with MPs stimulated angiogenesis with a significant increase of vessels infiltrating into the matrigel chamber. We demonstrated that MPs activate RASFs to release pro‐angiogenic ELR+ chemokines. These pro‐angiogenic mediators enhance migration of endothelial cells and stimulate the formation of new vessels. Our data suggest that MPs may contribute to the hypervascularization of inflamed joints in patients with rheumatoid arthritis.  相似文献   

3.
Artemisinins are plant products with a wide range of medicinal applications. Most prominently, artesunate is a well tolerated and effective drug for treating malaria, but is also active against several protozoal and schistosomal infections, and additionally exhibits anti‐angiogenic, anti‐tumorigenic and anti‐viral properties. The array of activities of the artemisinins, and the recent emergence of malaria resistance to artesunate, prompted us to synthesize and evaluate several novel artemisinin‐like derivatives. Sixteen distinct derivatives were therefore synthesized and the in vitro cytotoxic effects of each were tested with different cell lines. The in vivo anti‐angiogenic properties were evaluated using a zebrafish embryo model. We herein report the identification of several novel artemisinin‐like compounds that are easily synthesized, stable at room temperature, may overcome drug‐resistance pathways and are more active in vitro and in vivo than the commonly used artesunate. These promising findings raise the hopes of identifying safer and more effective strategies to treat a range of infections and cancer.  相似文献   

4.
Recent studies have highlighted the relevance of viral nucleic acid immunorecognition by pattern recognition receptors in atherogenesis. Melanoma differentiation associated gene 5 (MDA‐5) belongs to the intracellular retinoic acid inducible gene‐I like receptors and its activation promotes pro‐inflammatory mechanisms. Here, we studied the effect of MDA‐5 stimulation in vascular biology. To gain insights into MDA‐5 dependent effects on endothelial function, cultured human coronary artery endothelial cells (HCAEC) were transfected with the synthetic MDA‐5 agonist polyIC (long double‐stranded RNA). Human coronary endothelial cell expressed MDA‐5 and reacted with receptor up‐regulation upon stimulation. Reactive oxygen species formation, apoptosis and the release of pro‐inflammatory cytokines was enhanced, whereas migration was significantly reduced in response to MDA‐5 stimulation. To test these effects in vivo, wild‐type mice were transfected with 32.5 μg polyIC/JetPEI or polyA/JetPEI as control every other day for 7 days. In polyIC‐treated wild‐type mice, endothelium‐dependent vasodilation and re‐endothelialization was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticles and circulating endothelial progenitor cells significantly elevated compared to controls. Importantly, these effects could be abrogated by MDA‐5 deficiency in vivo. Finally, chronic MDA‐5 stimulation in Apolipoprotein E/toll‐like receptor 3 (TLR3) doubledeficient (ApoE?/?/TLR3?/?) mice‐enhanced atherosclerotic plaque formation. This study demonstrates that MDA‐5 stimulation leads to endothelial dysfunction, and has the potential to aggravate atherosclerotic plaque burden in murine atherosclerosis. Thus, the spectrum of relevant innate immune receptors in vascular diseases and atherogenesis might not be restricted to TLRs but also encompasses the group of RLRs including MDA‐5.  相似文献   

5.
The long‐term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin?Sca‐1+ CD49f+ Trop2high‐phenotype) and human (Lin? CD49f+ TROP2high) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti‐human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single‐cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f+/TROP2high phenotype of basal prostate progenitor cells and characterized by in vivo sandwich‐transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9+/CD24+/CD29+/CD44+/CD47+/CD49f+/CD104+/CD147+/CD326+/Trop2high of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan‐1 and stage‐specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f+ TROP2+ basal prostate progenitor cells. Transplantation experiments suggest that CD49f+ TROP2high SSEA‐4high human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f+ TROP2high or CD49f+ TROP2high SSEA‐4low cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA‐4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage.  相似文献   

6.
Aging is associated with impaired vaccine efficacy and increased susceptibility to infectious and malignant diseases. CD8+ T‐cells are key players in the immune response against pathogens and tumors. In aged mice, the dwindling naïve CD8+ T‐cell compartment is thought to compromise the induction of de novo immune responses, but no experimental evidence is yet available in humans. Here, we used an original in vitro assay based on an accelerated dendritic cell coculture system in unfractioned peripheral blood mononuclear cells to examine CD8+ T‐cell priming efficacy in human volunteers. Using this approach, we report that old individuals consistently mount quantitatively and qualitatively impaired de novo CD8+ T‐cell responses specific for a model antigen. Reduced CD8+ T‐cell priming capacity in vitro was further associated with poor primary immune responsiveness in vivo. This immune deficit likely arises as a consequence of intrinsic cellular defects and a reduction in the size of the naïve CD8+ T‐cell pool. Collectively, these findings provide new insights into the cellular immune insufficiencies that accompany human aging.  相似文献   

7.
Although human amniotic fluid does contain different populations of foetal‐derived stem cells, scanty information is available on the stemness and the potential immunomodulatory activity of in vitro expanded, amniotic fluid stem cells. By means of a methodology unrequiring immune selection, we isolated and characterized different stem cell types from second‐trimester human amniotic fluid samples (human amniotic fluid stem cells, HASCs). Of those populations, one was characterized by a fast doubling time, and cells were thus designated as fHASCs. Cells maintained their original phenotype under prolonged in vitro passaging, and they were able to originate embryoid bodies. Moreover, fHASCs exhibited regulatory properties when treated with interferon (IFN)‐γ, including induction of the immunomodulatory enzyme indoleamine 2,3‐dioxygenase 1 (IDO1). On coculture with human peripheral blood mononuclear cells, IFN‐γ–treated fHASCs caused significantly decreased T‐cell proliferation and increased frequency in CD4+ CD25+ FOXP3+ regulatory T cells. Both effects required an intact IDO1 function and were cell contact‐independent. An unprecedented finding in our study was that purified vesicles from IFN‐γ–treated fHASCs abundantly expressed the functional IDO1 protein, and those vesicles were endowed with an fHASC‐like regulatory function. In vivo, fHASCs were capable of immunoregulatory function, promoting allograft survival in a mouse model of allogeneic skin transplantation. This was concurrent with the expansion of CD4+ CD25+ Foxp3+ T cells in graft‐draining lymph nodes from recipient mice. Thus fHASCs, or vesicles thereof, may represent a novel opportunity for immunoregulatory maneuvers both in vitro and in vivo.  相似文献   

8.

Objectives

This study investigated effects of reduced serum condition and vascular endothelial growth factor (VEGF) on angiogenic potential of adipose stromal cells (ASCs) in vitro.

Materials and methods

Adipose stromal cells were cultured in three different types of medium: (i) F12/DMEM (FD) supplemented with 10% FBS from passage 0 (P0) to P6; (ii) FD supplemented with 2% FBS at P6; and (iii) FD supplemented with 2% FBS plus 50 ng/ml of VEGF at P6. Morphological changes and growth rate of ASCs were recorded. Changes in stemness, angiogenic and endogenic genes’ expressions were analysed using Real‐Time PCR.

Results

Adipose stromal cells changed from fibroblast‐like shape when cultured in 10% FBS medium to polygonal when cultured in 2% FBS plus VEGF‐supplemented medium. Their growth rate was lower in 2% FBS medium, but increased with addition of VEGF. Real‐Time PCR showed that ASCs maintained most of their stemness and angiogenic genes’ expression in 10% FBS at P1, P5 and P6, but this increased significantly in 2% FBS at P6. Endogenic genes expression such as PECAM‐1, VE chaderin and VEGFR‐2 decreased after serial passage in 10% FBS, but increased significantly at P6 in 2% FBS. Addition of VEGF did not cause any significant change in gene expression level.

Conclusion

Adipose stromal cells had greater angiogenic potential when cultured in reduced serum conditions. VEGF did not enhance their angiogenic potential in 2% FBS‐supplemented medium.
  相似文献   

9.
Brain arteriovenous malformations (AVMs) which associate with angiogenesis due to local hypertension, chronic cerebral ischaemia and tissue hypoxia usually lead to haemorrhage, however, the therapeutic medicine for the disease is still lacking. 2‐methoxyestradiol (2‐ME) has been shown effective in the anti‐angiogenic treatment. This study was conducted to examine whether and how 2‐ME could improve the vascular malformations. Intracranial venous hypertension (VH) model produced in adult male Sprague‐Dawley rats and culture of human umbilical vein endothelial cells (HUVECs) at the anoxia condition were used to induce in vivo and in vitro angiogenesis, respectively. Lentiviral vectors of ID‐1 and p53 genes and of their siRNA were intracranially injected into rats and transfected into HUVECs to overexpress and down‐regulate these molecules. 2‐ME treatment not only reduced the in vivo progression of brain tissue angiogenesis in the intracranial VH rats and the in vitro increases in microvasculature formation, cellular migration and HIF‐1α expression induced by anoxia in HUVECs but also reversed the up‐regulation of ID‐1 and down‐regulation of p53 in both the in vivo and in vitro angiogenesis models. All of the anti‐angiogenesis effects of 2‐ME observed in VH rats and anoxic HUVECs were abrogated by ID‐1 overexpression and p53 knockdown. Our data collectively suggest that 2‐ME treatment inhibits hypoxia/anoxia‐induced angiogenesis dependently on ID‐1 down‐regulation and p53 up‐regulation, providing a potential alternative medical treatment for un‐ruptured AVM patients.  相似文献   

10.
Crosstalk between the nervous and vascular systems is important during development and in response to injury, and the laminin‐like axonal guidance protein netrin‐1 has been studied for its involvement in angiogenesis and vascular remodelling. In this study, we examined the role of netrin‐1 in angiogenesis and explored the underlying mechanisms. The effect of netrin‐1 on brain tissues and endothelial cells was examined by immunohistochemistry and western blotting in a middle cerebral artery occlusion model and in human umbilical vein endothelial cells. Cell proliferation and cell cycle progression were assessed by the MTT assay and flow cytometry, and the Transwell and tube formation assays were used to examine endothelial cell motility and function. Netrin‐1 up‐regulated CD151 and VEGF concomitant with the activation of focal adhesion kinase (FAK), Src and Paxillin in vitro and in vivo and the induction of cell proliferation, migration and tube formation in vitro. Silencing of CD151 abolished the effects of netrin‐1 on promoting cell migration and tube formation mediated by the activation of FAK/Src signalling. Netrin‐1 promoted angiogenesis in vitro and in vivo by activating the FAK/Src/Paxillin signalling pathway through a mechanism dependent on the expression of the CD151 tetraspanin, suggesting the existence of a netrin‐1/FAK/Src/CD151 signalling axis involved in the modulation of angiogenesis.  相似文献   

11.
12.
CD8+ cytotoxic T lymphocytes (CTLs) are critical mediators of anti‐tumor immunity, and controlling the mechanisms that govern CTL functions could be crucial for enhancing patient outcome. Previously, we reported that hepatocyte growth factor (HGF) limits effective murine CTL responses via antigen‐presenting cells. Here, we show that a fraction of murine effector CTLs expresses the HGF receptor c‐Met (c‐Met+ CTLs). Phenotypic and functional analysis of c‐Met+ CTLs reveals that they display enhanced cytolytic capacities compared to their c‐Met? CTL counterparts. Furthermore, HGF directly restrains the cytolytic function of c‐Met+ CTLs in cell‐mediated cytotoxicity reactions in vitro and in vivo and abrogates T‐cell responses against metastatic melanoma in vivo. Finally, we establish in three murine tumor settings and in human melanoma tissues that c‐Met+ CTLs are a naturally occurring CD8+ T‐cell population. Together, our findings suggest that the HGF/c‐Met pathway could be exploited to control CD8+ T‐cell‐mediated anti‐tumor immunity.  相似文献   

13.
Recently, the dipeptidyl peptidase‐4 (DPP‐4) inhibitor sitagliptin, a major anti‐hyperglycaemic agent, has received substantial attention as a therapeutic target for cardiovascular diseases via enhancing the number of circulating endothelial progenitor cells (EPCs). However, the direct effects of sitagliptin on EPC function remain elusive. In this study, we evaluated the proangiogenic effects of sitagliptin on a diabetic hind limb ischaemia (HLI) model in vivo and on EPC culture in vitro. Treatment of db/db mice with sitagliptin (Januvia) after HLI surgery efficiently enhanced ischaemic angiogenesis and blood perfusion, which was accompanied by significant increases in circulating EPC numbers. EPCs derived from the bone marrow of normal mice were treated with high glucose to mimic diabetic hyperglycaemia. We found that high glucose treatment induced EPC apoptosis and tube formation impairment, which were significantly prevented by sitagliptin pretreatment. A mechanistic study found that high glucose treatment of EPCs induced dramatic increases in oxidative stress and apoptosis; pretreatment of EPCs with sitagliptin significantly attenuated high glucose‐induced apoptosis, tube formation impairment and oxidative stress. Furthermore, we found that sitagliptin restored the basal autophagy of EPCs that was impaired by high glucose via activating the AMP‐activated protein kinase/unc‐51‐like autophagy activating kinase 1 signalling pathway, although an autophagy inhibitor abolished the protective effects of sitagliptin on EPCs. Altogether, the results indicate that sitagliptin‐induced preservation of EPC angiogenic function results in an improvement of diabetic ischaemia angiogenesis and blood perfusion, which are most likely mediated by sitagliptin‐induced prevention of EPC apoptosis via augmenting autophagy.  相似文献   

14.
15.
Mitochondrial malfunction is a universal and critical step in the pathogenesis of many neurodegenerative diseases including prion diseases. Dynamin‐like protein 1 (DLP1) is one of the key regulators of mitochondrial fission. In this study, we investigated the role of DLP1 in mitochondrial fragmentation and dysfunction in neurons using in vitro and in vivo prion disease models. Mitochondria became fragmented and redistributed from axons to soma, correlated with increased mitochondrial DLP1 expression in murine primary neurons (N2a cells) treated with the prion peptide PrP106–126 in vitro as well as in prion strain‐infected hamster brain in vivo. Suppression of DLP1 expression by DPL1 RNAi inhibited prion‐induced mitochondrial fragmentation and dysfunction (measured by ADP/ATP ratio, mitochondrial membrane potential, and mitochondrial integrity). We also demonstrated that DLP1 RNAi is neuroprotective against prion peptide in N2a cells as shown by improved cell viability and decreased apoptosis markers, caspase 3 induced by PrP106–126. On the contrary, overexpression of DLP1 exacerbated mitochondrial dysfunction and cell death. Moreover, inhibition of DLP1 expression ameliorated PrP106–126‐induced neurite loss and synaptic abnormalities (i.e., loss of dendritic spine and PSD‐95, a postsynaptic scaffolding protein as a marker of synaptic plasticity) in primary neurons, suggesting that altered DLP1 expression and mitochondrial fragmentation are upstream events that mediate PrP106–126‐induced neuron loss and degeneration. Our findings suggest that DLP1‐dependent mitochondrial fragmentation and redistribution plays a pivotal role in PrPSc‐associated mitochondria dysfunction and neuron apoptosis. Inhibition of DLP1 may be a novel and effective strategy in the prevention and treatment of prion diseases.  相似文献   

16.
This study sought to determine the potential role of microRNAs (miRNAs) in the detrimental effects of cigarette smoke on angiogenesis and neovascularization. Using large‐scale miRNA profiling and qRT‐PCR analyses, we identified let‐7f as a pro‐angiogenic miRNA which expression is significantly reduced in HUVECs treated with cigarette smoke extracts (CSE), and in the ischemic muscles of mice that are exposed to cigarette smoke (MES). In a mouse model of hindlimb ischaemia, intramuscular injection of let‐7f mimic restored ischaemia‐induced neovascularization in MES. Doppler flow ratios and capillary density in ischemic muscles were significantly improved in MES treated with let‐7f mimic. Clinically, this was associated with reduced ambulatory impairment and hindlimb ischaemic damage. Treatment with let‐7f mimic could also rescue pro‐angiogenic cell (PAC) number and function (attachment, proliferation, migration) in MES. ALK5 (TGF‐βR1), an important modulator of angiogenesis, is a target of let‐7f. Here we show that ALK5 is increased in HUVECs exposed to CSE and in the ischaemic muscles of MES. This is associated with a downstream activation of the anti‐angiogenic factors SMAD2/3 and PAI‐1. Importantly, treatment with let‐7f mimic reduces the expression of ALK5, SMAD2/3 and PAI‐1 both in vitro and in vivo. Moreover, let‐7f overexpression or ALK5 inhibition can rescue angiogenesis in HUVECs exposed to CSE. Cigarette smoke exposure is associated with reduced expression of let‐7f and activation of the anti‐angiogenic TGF‐β/ALK5 pathway. Overexpression of let‐7f using a miRNA mimic could constitute a novel therapeutic strategy to improve ischaemia‐induced neovascularization in pathological conditions.  相似文献   

17.
18.
19.
The D4 dopamine receptor belongs to the D2‐like family of dopamine receptors, and its exact regional distribution in the central nervous system is still a matter of considerable debate. The availability of a selective radioligand for the D4 receptor with suitable properties for positron emission tomography (PET) would help resolve issues of D4 receptor localization in the brain, and the presumed diurnal change of expressed protein in the eye and pineal gland. We report here on in vitro and in vivo characteristics of the high‐affinity D4 receptor‐selective ligand N‐{2‐[4‐(3‐cyanopyridin‐2‐yl)piperazin‐1‐yl]ethyl}‐3‐[11C]methoxybenzamide ([11C] 2 ) in rat. The results provide new insights on the in vitro properties that a brain PET dopamine D4 radioligand should possess in order to have improved in vivo utility in rodents.  相似文献   

20.
Methylated inositol, d ‐pinitol (3‐O‐methyl‐d ‐chiro‐inositol), is a common constituent in legumes. It is synthesized from myo‐inositol in two reactions: the first reaction, catalyzed by myo‐inositol‐O‐methyltransferase (IMT), consists of a transfer of a methyl group from S‐adenosylmethionine to myo‐inositol with the formation of d ‐ononitol, while the second reaction, catalyzed by d ‐ononitol epimerase (OEP), involves epimerization of d ‐ononitol to d ‐pinitol. To identify the genes involved in d ‐pinitol biosynthesis in a model legume Medicago truncatula, we conducted a BLAST search on its genome using soybean IMT cDNA as a query and found putative IMT (MtIMT) gene. Subsequent co‐expression analysis performed on publicly available microarray data revealed two potential OEP genes: MtOEPA, encoding an aldo‐keto reductase and MtOEPB, encoding a short‐chain dehydrogenase. cDNAs of all three genes were cloned and expressed as recombinant proteins in E. coli. In vitro assays confirmed that putative MtIMT enzyme catalyzes methylation of myo‐inositol to d ‐ononitol and showed that MtOEPA enzyme has NAD+‐dependent d ‐ononitol dehydrogenase activity, while MtOEPB enzyme has NADP+‐dependent d ‐pinitol dehydrogenase activity. Both enzymes are required for epimerization of d ‐ononitol to d ‐pinitol, which occurs in the presence of NAD+ and NADPH. Introduction of MtIMT, MtOEPA, and MtOEPB genes into tobacco plants resulted in production of d ‐ononitol and d ‐pinitol in transformants. As this two‐step pathway of d ‐ononitol epimerization is coupled with a transfer of reducing equivalents from NADPH to NAD+, we speculate that one of the functions of this pathway might be regeneration of NADP+ during drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号