首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved synthesis of (2S, 4S)‐ and (2S, 4R)‐2‐amino‐4‐methyldecanoic acids was accomplished using a glutamate derivative as starting material and Evans' asymmetric alkylation as the decisive step. The NMR data of the two diastereomers were measured and compared with those of the natural product. As a result, the stereochemistry of this novel amino acid unit in culicinins was assigned as (2S, 4R). Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The measurement of glycated hemoglobin A1c (HbA1c) has important implications for diagnosis of diabetes and assessment of treatment effectiveness. We proposed specific sequence motifs to identify enzymes that oxidize glycated compounds from genome database searches. The gene encoding a putative fructosyl amino acid oxidase was found in the Phaeosphaeria nodorum SN15 genome and successfully expressed in Escherichia coli. The recombinant protein (XP_001798711) was confirmed to be a novel fructosyl peptide oxidase (FPOX) with high specificity for α‐glycated compounds, such as HbA1c model compounds fructosyl‐αN‐valine (f‐αVal) and fructosyl‐αN‐valyl‐histidine (f‐αVal‐His). Unlike previously reported FPOXs, the P. nodorum FPOX has a Km value for f‐αVal‐His (0.185 mM) that is considerably lower than that for f‐αVal (0.458 mM). Based on amino acid sequence alignment, three dimensional structural modeling, and site‐directed mutagenesis, Gly60 was found to be a determining residue for the activity towards f‐αVal‐His. A flexible surface loop region was also found to likely play an important role in accepting f‐αVal‐His. Biotechnol. Bioeng. 2010; 106: 358–366. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
4.
N‐acetylglucosamine 6‐phosphate deacetylase (NagA) catalyzes the conversion of N‐acetylglucosamine‐6‐phosphate to glucosamine‐6‐phosphate in amino sugar catabolism. This conversion is an essential step in the catabolism of sialic acid in several pathogenic bacteria, including Pasteurella multocida, and thus NagA is identified as a potential drug target. Here, we report the unique structural features of NagA from P. multocida (PmNagA) resolved to 1.95 Å. PmNagA displays an altered quaternary architecture with unique interface interactions compared to its close homolog, the Escherichia coli NagA (EcNagA). We confirmed that the altered quaternary structure is not a crystallographic artifact using single particle electron cryo‐microscopy. Analysis of the determined crystal structure reveals a set of hot‐spot residues involved in novel interactions at the dimer‐dimer interface. PmNagA binds to one Zn2+ ion in the active site and demonstrates kinetic parameters comparable to other bacterial homologs. Kinetic studies reveal that at high substrate concentrations (~10‐fold the KM), the tetrameric PmNagA displays hysteresis similar to its distant neighbor, the dimeric Staphylococcus aureus NagA (SaNagA). Our findings provide key information on structural and functional properties of NagA in P. multocida that could be utilized to design novel antibacterials.  相似文献   

5.
Mono‐N‐ethylated α‐amino acid esters are obtained in high yields using reductive amination procedures. Formation of imine is achieved by excess of acetaldehyde, followed by removal of acetaldehyde and reduction by NaBH(OAc)3. The elaborated one‐pot synthesis allows for the efficient synthesis of side‐chain protected amino acid derivatives. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
7.
A family of six genes encoding acyl‐CoA‐binding proteins (ACBPs), ACBP1–ACBP6, has been characterized in Arabidopsis thaliana. In this study, we demonstrate that ACBP1 promotes abscisic acid (ABA) signaling during germination and seedling development. ACBP1 was induced by ABA, and transgenic Arabidopsis ACBP1‐over‐expressors showed increased sensitivity to ABA during germination and seedling development, whereas the acbp1 mutant showed decreased ABA sensitivity during these processes. Subsequent RNA assays showed that ACBP1 over‐production in 12‐day‐old seedlings up‐regulated the expression of PHOSPHOLIPASE Dα1 (PLDα1) and three ABA/stress‐responsive genes: ABA‐RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), RESPONSE TO DESICCATION29A (RD29A) and bHLH‐TRANSCRIPTION FACTOR MYC2 (MYC2). The expression of AREB1 and PLDα1 was suppressed in the acbp1 mutant in comparison with the wild type following ABA treatment. PLDα1 has been reported to promote ABA signal transduction by producing phosphatidic acid, an important lipid messenger in ABA signaling. Using lipid profiling, seeds and 12‐day‐old seedlings of ACBP1‐over‐expressing lines were shown to accumulate more phosphatidic acid after ABA treatment, in contrast to lower phosphatidic acid in the acbp1 mutant. Bimolecular fluorescence complementation assays indicated that ACBP1 interacts with PLDα1 at the plasma membrane. Their interaction was further confirmed by yeast two‐hybrid analysis. As recombinant ACBP1 binds phosphatidic acid and phosphatidylcholine, ACBP1 probably promotes PLDα1 action. Taken together, these results suggest that ACBP1 participates in ABA‐mediated seed germination and seedling development.  相似文献   

8.
The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant‐prokaryote comparative genomics detected candidates for 3‐methylglutaconyl‐CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non‐homologous N‐terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein‐fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3‐hydroxymethylglutaryl‐CoA into 3‐methylglutaconyl‐CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark‐induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3‐methylglutaconyl‐CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.  相似文献   

9.
An Fe(II)/α‐ketoglutarate‐dependent dioxygenase, SadA, was obtained from Burkholderia ambifaria AMMD and heterologously expressed in Escherichia coli. Purified recombinant SadA had catalytic activity towards several N‐substituted l‐amino acids, which was especially strong with N‐succinyl l‐leucine. With the NMR and LC‐MS analysis, SadA converted N‐succinyl l‐leucine into N‐succinyl l‐threo‐β‐hydroxyleucine with >99% diastereoselectivity. SadA is the first enzyme catalysing β‐hydroxylation of aliphatic amino acid‐related substances and a potent biocatalyst for the preparation of optically active β‐hydroxy amino acids.  相似文献   

10.
11.
Two bacterial strains used for industrial production of 2‐keto‐L‐gulonic acid (2‐KLG), Ketogulonigenium vulgare 2 and Bacillus thuringiensis 1514, were loaded onto the spacecraft Shenzhou VII and exposed to space conditions for 68 h in an attempt to increase their fermentation productivities of 2‐KLG. An optimal combination of mutants B. thuringiensis 320 and K. vulgare 2194 (KB2194‐320) was identified by systematically screening the pH and 2‐KLG production of 16 000 colonies. Compared with the coculture of parent strains, the conversion rate of L‐sorbose to 2‐KLG by KB2194‐320 in shake flask fermentation was increased significantly from 82·7% to 95·0%. Furthermore, a conversion rate of 94·5% and 2‐KLG productivity of 1·88 g l?1 h?1 were achieved with KB2194‐320 in industrial‐scale fermentation (260 m3 fermentor). An observed increase in cell number of K2194 (increased by 47·8%) during the exponential phase and decrease in 2‐KLG reductase activity (decreased by 46·0%) were assumed to explain the enhanced 2‐KLG production. The results suggested that the mutants KB2194‐320 could be ideal substitutes for the currently employed strains in the 2‐KLG fermentation process and demonstrated the feasibility of using spaceflight to breed high‐yielding 2‐KLG‐producing strains for vitamin C production.

Significance and Impact of the Study

KB2194‐320, a combination of two bacterial strains bred by spaceflight mutation, exhibited significantly improved 2‐KLG productivity and hence could potentially increase the efficiency and reduce the cost of vitamin C production by the two‐step fermentation process. In addition, a new pH indicator method was applied for rational screening of K2, which dramatically improved the efficiency of screening.  相似文献   

12.
Neurons responsible for sensing noxious stimuli and conducting pain signals from periphery to the spinal cord are predominantly glutamatergic. Members of the SLC1A family of high‐affinity glutamate transporters (GluTs) are differentially expressed in sensory neurons and surrounding glial cells. These plasma membrane proteins along with glutamate/cystine exchanger, light chain of cystine/glutamate exchanger, are responsible for fine tuning of extracellular glutamate concentrations and, thus, for modulation of excitatory signalling in the spinal cord. Emerging data point at key roles of GluTs in molecular mechanisms of chronic pain and analgesia, incl. development of opioid tolerance. Pharmacological inhibition or antisense down‐regulation of spinal GluTs can induce/aggravate pain behaviours, whereas increasing of expression of GluTs by viral gene transfer or positive pharmacological modulators can mitigate chronic pain. Furthermore, some drugs, originally introduced for targeting different pathological conditions, but in parallel exhibiting analgesic properties (e.g. anti‐convulsants valproate and riluzole, β‐lactam‐ and tetracycline antibiotics, tricyclic anti‐depressants), can enhance glutamate transport in the spinal cord. Thus, molecular modulation of GluTs may turn into prospective therapeutic approach for the management of chronic pain. However, precise pharmacological targeting of this transport system requires in‐depth elucidation of molecular factors and signalling pathways underlying expression and activity of individual GluT subtypes, including their splice variants.

  相似文献   


13.
14.
The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol‐3‐phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P‐binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P‐binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P‐binding site, or by a secreted PI4P‐binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P‐binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P‐binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens.  相似文献   

15.
Previously, we showed that the antimicrobial cationic and amphipathic octadecapeptide AmyI‐1‐18 from rice α‐amylase (AmyI‐1) inhibited the endotoxic activity of lipopolysaccharide (LPS) from Escherichia coli. In addition, we demonstrated that several AmyI‐1‐18 analogs containing arginine or leucine substitutions, which were designed on the basis of the helical wheel projection of AmyI‐1‐18, exhibited higher antimicrobial activity against human pathogenic microorganisms than AmyI‐1‐18. In the present study, anti‐inflammatory (anti‐endotoxic) activities of five AmyI‐1‐18 analogs containing arginine or leucine substitutions were investigated. Two single arginine‐substituted and two single leucine‐substituted AmyI‐1‐18 analogs inhibited the production of LPS‐induced nitric oxide in mouse macrophages (RAW264) more effectively than AmyI‐1‐18. These data indicate that enhanced cationic and hydrophobic properties of AmyI‐1‐18 are associated with improved anti‐endotoxic activity. In subsequent chromogenic Limulus amebocyte lysate assays, 50% inhibitory concentrations (IC50) of the three AmyI‐1‐18 analogs (G12R, D15R, and E9L) were 0.11–0.13 μm , indicating higher anti‐endotoxic activity than that of AmyI‐1‐18 (IC50, 0.22 μm ), and specific LPS binding activity. In agreement, surface plasmon resonance analyses confirmed direct LPS binding of three AmyI‐1‐18 analogs. In addition, AmyI‐1‐18 analogs exhibited little or no cytotoxic activity against RAW264 cells, indicating that enhancements of anti‐inflammatory and LPS‐neutralizing activities following replacement of arginine or leucine did not result in significant increases in cytotoxicity. This study shows that the arginine‐substituted and leucine‐substituted AmyI‐1‐18 analogs with improved anti‐endotoxic and antimicrobial activities have clinical potential as dual‐function host defense agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
17.
Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA‐induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA‐induced degradation of 5,6‐dihydroxyindole‐2‐carboxylic acid (DHICA)‐melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA‐induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole‐5,6‐quinone‐2‐carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole‐2,3,5‐tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA‐melanin was confirmed by direct measurements of singlet oxygen phosphorescence.  相似文献   

18.
Rhodophyta produce a variety of chemically different mycosporine‐like amino acids (MAAs), compounds that are known as some of the strongest ultraviolet (UV) absorbing molecules in nature. Accordingly, they primarily act as photoprotectants against harmful levels of solar ultraviolet radiation in the UV‐A and UV‐B range. In order to get a deeper understanding of the chemical diversity of MAAs in red algae, pure standards of eleven mycosporine‐like amino acids were isolated from three different species (Agarophyton chilense, Pyropia plicata and Champia novae‐zelandiae) using various chromatographic methods. Their structures were confirmed by nuclear magnetic resonance and mass spectrometry. Four out of the eleven MAAs are reported for the first time in algae. In addition, a new high‐performance liquid chromatography method was developed for the separation of all isolated MAAs and successfully applied for the analysis of twenty‐three red algal species of marine origin. All of them contained MAAs, the most abundant compounds were shinorine, palythine, asterina‐330 and porphyra‐334. For some samples, the direct assignment of MAAs based on their UV spectra was not possible; therefore, the target analytes were enriched by a simple concentration step, followed by liquid chromatography‐mass spectrometry analysis of the extracts. This approach enabled a deeper insight into the MAA pattern of red algae, indicating that not only the four dominant ones are synthesized but also many others, which were often described as unknown compounds in previous studies.  相似文献   

19.
20.
l ‐Theanine is a specialized metabolite in the tea (Camellia sinensis) plant which can constitute over 50% of the total amino acids. This makes an important contribution to tea functionality and quality, but the subcellular location and mechanism of biosynthesis of l ‐theanine are unclear. Here, we identified five distinct genes potentially capable of synthesizing l ‐theanine in tea. Using a nonaqueous fractionation method, we determined the subcellular distribution of l ‐theanine in tea shoots and roots and used transient expression in Nicotiana or Arabidopsis to investigate in vivo functions of l ‐theanine synthetase and also to determine the subcellular localization of fluorescent‐tagged proteins by confocal laser scanning microscopy. In tea root tissue, the cytosol was the main site of l ‐theanine biosynthesis, and cytosol‐located CsTSI was the key l ‐theanine synthase. In tea shoot tissue, l ‐theanine biosynthesis occurred mainly in the cytosol and chloroplasts and CsGS1.1 and CsGS2 were most likely the key l ‐theanine synthases. In addition, l ‐theanine content and distribution were affected by light in leaf tissue. These results enhance our knowledge of biochemistry and molecular biology of the biosynthesis of functional tea compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号